Barbara lkica

Computational Social
Science seminar

29 October 2019



Networks and

Algorithms Main ingredients

Barbara lkica

Outline
Network 0
algorithms c
Data representation “A set of mathematical instructions or rules that, RECBPK
Compueni ity especially if given to a computer, will help to calculate £0
Examples an answer to a problem.”
Centrality indices [PR] Cambridge Dicti p— (
Community detection (Cambricge Dictionary) 0

O ——— =T
[mPW] BEA

References

Software

Reading




Networks and
Algorithms

Barbara lkica

Outline

Network
algorithms
Data representation

Computational complexity

Examples
Centrality indices [PR]
Community detection
[mPW]
References
Software

Reading

Main ingredients

“A set of mathematical instructions or rules that,
especially if given to a computer, will help to calculate
an answer to a problem.”

(Cambridge Dictionary)

BEA)

@

RECIPE
goOK

=

“A network is, in its simplest form, a collection of
points joined together in pairs by lines.”
(Newman, Networks: An Introduction, 2010)
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(Newman, Networks: An Introduction, 2010)
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o Centrality indices — PageRank

o Community detection — the
modified Petford—Welsh
algorithm
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Vertex degrees:

Q Q Current highest degree: 0
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Computational resources (time, space, memory) needed to run an algorithm.

An estimate how the running time scales with the input.

Example: finding the highest degree

‘ Vertex degrees:
Q Q Highest degree: 5

Time complexity:
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Always pre-estimate the running time (test run
first, scale up appropriately).
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Z“ﬂ:"'e networks: O(|V]?))

® Closeness centrality cc(u) for u € V: O(|V] + |E|)
® Shortest paths on weighted networks: Dijkstra’s algorithm
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Petford—Welsh algorithm

Petford, A. D. & Welsh, D. J. A. A Randomised 3-Colouring Algorithm,
Discrete Math. 74 (1989), 253-261.

Zerovnik, J. A Randomized Algorithm for k-Colorability, Discrete Math. 131
(1994), 379-393.
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Petford—Welsh algorithm

The Petford—Welsh algorithm ...

® ... mimics the behaviour of a physical process based on a multi-particle
system in statistical mechanics (the antivoter model by Donnely and
Welsh),

® .. acts locally; thus, it is highly parallelisable,

® .. has the weak convergence property:

If k > x(G), there is a positive probability that the algorithm finds a proper
k-colouring in a finite number of steps (regardless of the initial colouring).
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Petford—Welsh Algorithm

A suitably defined parallel variant of the algorithm with a positive probability
finds a proper colouring in one (parallel) step starting from any initial
colouring, provided that a proper colouring exists.

If we increase the number of steps of the algorithm, the probability of reaching
a proper colouring becomes as close to 1 as desired.

Zerovnik, J. & Kaufman, M. A parallel variant of a heuristical algorithm for
graph coloring — Corrigendum, Parallel Comput. 18 (1993), 897-900.
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1. get initial k-clustering

2. while (there is a bad vertex) and (Var [bad edges| > tol) repeat
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Computational complexity
’ ’ The clustering is judged on the basis of certain intrinsic statistical properties

Eemps of the clustering itself.

Centrality indices [PR]

Modularity, conductance, coverage

References CExternal indices

Software
Reading The clustering is compared to a user-given gold-standard clustering (using a
pairwise/mapping approach).

Normalised mutual information, adjusted mutual information, adjusted Rand
index, Fg score, Fowlkes—Mallows index, Jaccard index, V-measure
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Quality measures / Internal indices

0 1

~ Kuke
~ 9B Z <““” 2|E|>5(c”’c”)

u,veV

Compares the presence of each intra-cluster edge with the probability of this

edge in a random graph

v =

ey Gurdeus o)

Eu,UGV Guv

A measure of intra-cluster density
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GJEeC
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B(Cy) =
L {ZuéCi,vGV Guv, Zugci,vev auv}

A measure of inter-cluster sparsity
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Reading H(C) = — RN log =0
' = VI = v
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IC: NG5l |C: NG|
H(C,G) = - log
Z V] V]
C;€C,G;€G

A measure of “information overlap” between C and G
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g _MIC,G) — EMI(C, G)]
References H(C)H(g) — E[MI(C, g)]

A measure of “information overlap” between C and G adjusted for chance
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Gonrtty s P ARI(C,g) = — BUC.9) ~E[RIC.9)] _
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A measure of the level of agreement between C and G as the fraction of
agreeing pairs of vertices to all possible pairs of vertices
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FM — TP ) TP
TP+ FP TP+ FN

Geometric mean of precision and recall
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Harmonic mean of homogeneity ho and completeness cp of the clustering
solution
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o Method NMI  ARI ¢ v Q ]

Examples Edge bet. 0.517 0.392 0.424 0.692 0.401 5

Centralty indices [PR] Fastgreedy 0576 0.568 0.574 0.756 0.381 3
Infomap 0.578 0.591 0.668 0.821 0.402 3

References Label prop. ~ 0.865 0.882 0.773 0.949 0.415 3

S Leading eig. 0.612 0.435 0.487 0.667 0.393 4

Reading Multilevel 0516 0.392 0.558 0.731 0.419 4
Spinglass 0.627 0.509 0.563 0.756 0.420 4
Walktrap 0.531 0.321 0.434 0590 0.353 5
mPW 1.000 1.000 0.773 0.949 0.403 2




Networks and

Algorithms Experiments

Barbara lkica

Motivation

Outline

e UKfeeuly (V=34 lB/=78)
algorithms The personal friendship network of a faculty of a UK university; the school

E’” 'i”'f“”‘l“'°"‘ . affiliation of each individual is stored as a vertex attribute.
i) Gy

Examples

Centrality indices [PR]

References
Software

Reading




Networks and

Algorithms Experiments / UK faculty

Barbara lkica

Motivation

Outline

Network

algorithms

o s Method NMI  ARI ¢ v Q ]

Examples Edge bet. 0.796 0.825 0.513 0.827 0.413 4

Cereaiy indices PR Fastgreedy ~ 0.849 0.820 0553 0775 0.444 4
Infomap 0.862 0.875 0.709 0.841 0.432 3

References Label prop. ~ 0.862 0.875 0709 0.953 0432 3

Sotrars Leading eig. 0.863 0.871 0.488 0.768 0.397 4

Reading Multilevel 0.802 0.796 0.573 0.749 0.449 4
Spinglass 0.872 0.842 0.573 0.749 0.449 4
Walktrap 0.862 0.875 0.709 0.841 0.432 3
mPW 0.911 0.918 0.741 0.953 0.432 3
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Examples Edge bet. 0.880 0.778 0.533 0.710 0.600 10

Centrality indices [PR] Fastgreedy 0.708 0.474 0567 0.731 0.550 6
Multilevel 0.891 0.807 0.547 0.708 0.605 10

References Leading eig. 0703 0.464 0.456 0641 0493 8

Sotrars Infomap 0.924 0.897 0505 0.690 0.601 12

Reading Label prop. 0.927 0.889 0.568 0.741 0.605 11
Spinglass 0.929 0.900 0563 0.728 0.605 11
Walktrap 0.888 0.815 0.547 0.705 0.603 10

mPW 0.936 0.900 0.600 0.780 0.603 9
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Network

algorithms Interactions between liberal and conservative blogs over the period of two

‘:““‘ e months preceding the U.S. Presidential Election of 2004.

Examples

e Method NMI ARI ¢ 5 Q Ic

References Edge bet. R - - ~ ~ -

Software Fastgreedy 0.659 0.785 0.451 0.923 0.427 10

Reading Infomap 0.523 0.651 0.250 0.899 0.423 41
Label prop. 0.723 0.813 0.857 1.000 0.426 3
Leading eig. 0.693 0.781 0.854 0.926 0.424 2
Multilevel 0.651 0.774 0.476 0.920 0.427 9
Spinglass 0.649 0.783 0.315 0.922 0.427 15
Walktrap 0.646 0.760 0.484 0.925 0.425 11
mPW 0.732 0.820 0.857 0.927 0.426 4
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Experiments

International E-road network (|V| = 1040, |E| = 1305)

An international system for numbering and designating roads stretching
throughout Europe and some parts of Central Asia.
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I\:Tivatio" International E-road network (|V| = 1040, |E| = 1305)

Network An international system for numbering and designating roads stretching
algorithms throughout Europe and some parts of Central Asia.
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Examples Edge bet. - - - -

Centralty indices [PR] Fastgreedy 0.860 0.917 0.861 24
Infomap 0.663 0.787 0.777 126

References Label prop. 0.731 0.856 0.828 82

Sotrars Leading eig. 0.794 0.887 0.835 26

Reading Multilevel 0.873 0.921 0.867 24
Spinglass 0.866 0.924 0.872 25
Walktrap 0.757 0.886 0.828 67

mPW 0.945 0.979 0.845 17
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Examples Edge bet. 0.155 0.932 0.314 118

Centralty indices [PR] Fastgreedy 0.594 0.771 0.431 18
Infomap 0.477 0.913 0.310 49

References Label prop. 0.653 0.959 0.258 20

St Leading eig. 0.682 0.806 0.410 3

Reading Multilevel 0.617 0.790 0.441 16
Spinglass 0.586 0.773 0.441 17
Walktrap 0.342 0.788 0.337 84

mPW 0.774 0.976 0.285 13
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LFR benchmark

LFR(|V| = 1000,y = 2,8 = 1,k_avg = 15, k_max = 100, c_min = 50, c_max = 100)

Normalised mutual information

Adjusted mutual information
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Computer resources

Network analysis and visualisation software

Pajek (free; large network analysis): http://vlado.fmf.uni-1j.si/pub/networks/pajek/
Gephi (free; (dynamic) network visualisation): https://gephi.org/

igraph (free; R/Python/Mathematica/C/C++ network analysis package): https://igraph.org/
NetworkX (free; Python package for complex networks): https://networkx.github.io/

SNAP (free; Python/C++ high performance library for large networks):
http://snap.stanford.edu/

Mathematica (commercial):
https://reference.wolfram.com/language/guide/GraphsAndNetworks.html

MATLAB (commercial):
https://mathworks.com/help/matlab/graph-and-network-algorithms.html

Network datasets

Newman: http://www-personal.umich.edu/~mejn/netdata/

Koblenz Network Collection: http://konect.uni-koblenz.de/networks/
SuiteSparse Matrix Collection: https://sparse.tamu.edu/

Network Repository: http://networkrepository.com/

(BIO)SNAP: http://snap.stanford.edu/data/index.html


http://vlado.fmf.uni-lj.si/pub/networks/pajek/
https://gephi.org/
https://igraph.org/
https://networkx.github.io/
http://snap.stanford.edu/
https://reference.wolfram.com/language/guide/GraphsAndNetworks.html
https://mathworks.com/help/matlab/graph-and-network-algorithms.html
http://www-personal.umich.edu/~mejn/netdata/
http://konect.uni-koblenz.de/networks/
https://sparse.tamu.edu/
http://networkrepository.com/
http://snap.stanford.edu/data/index.html
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Computational complexity °

Newman, M. E. J. Networks: An Introduction (Oxford University Press,
Examples New York, NY, 2010).

Centrality indices [PR]

R ® Brandes, U. & Erlebach, T. Network Analysis: Methodological
mPW] Foundations (Springer, Berlin, Heidelberg, 2005).

References ® |kica, B. Clustering via the Modified Petford—Welsh Algorithm. To appear
in Ars Mathematica Contemporanea (AMC).

Ikica, B., Povh, J. & Zerovnik, J. Clustering as a Dual Problem to
Colouring. Submitted.
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