

Barbara Ikica

Computational Social Science seminar

29 October 2019

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation Computational complexit

Examples

Centrality indices [PR] Community detection [mPW]

References

Software Reading

Main ingredients

Algorithm

"A set of mathematical instructions or rules that, especially if given to a computer, will help to calculate an answer to a problem."

(Cambridge Dictionary)

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation Computational complexity

Examples

Centrality indices [PR] Community detection [mPW]

References

Software Reading

Main ingredients

Algorithm

"A set of mathematical instructions or rules that, especially if given to a computer, will help to calculate an answer to a problem."

(Cambridge Dictionary)

Network

"A network is, in its simplest form, a collection of points joined together in pairs by lines." (Newman, Networks: An Introduction, 2010)

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation Computational complexity

Examples

Centrality indices [PR] Community detection [mPW]

References

Software Reading

Main ingredients

Algorithm

"A set of mathematical instructions or rules that, especially if given to a computer, will help to calculate an answer to a problem."

(Cambridge Dictionary)

Network

"A network is, in its simplest form, a collection of points joined together in pairs by lines." (Newman, Networks: An Introduction, 2010)

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation Computational complexity

Examples

Centrality indices [PR] Community detection [mPW]

References

Software Reading

Main ingredients

Algorithm

"A set of mathematical instructions or rules that, especially if given to a computer, will help to calculate an answer to a problem."

(Cambridge Dictionary)

Network

"A network is, in its simplest form, a collection of points joined together in pairs by lines." (Newman, Networks: An Introduction, 2010)

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Königsberg bridge problem

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR] Community detection [mPW]

References

Software Reading

Königsberg bridge problem

Does there exist a route that crosses each of the seven bridges exactly once?

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR] Community detection [mPW]

References

Software Reading

Königsberg bridge problem

Does there exist a route that crosses each of the seven bridges exactly once?

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation Computational complexity

Examples

Centrality indices [PR] Community detection [mPW]

References

Software Reading

Meanwhile, in Zürich ...

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Outline

Network algorithms

- data representation
- computational complexity

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR] Community detection

References

Software Reading

Network algorithms

- data representation
- computational complexity

Examples

Outline

- Centrality indices PageRank
- Community detection the modified Petford–Welsh algorithm

Adjacency matrix

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR] Community detection [mPW]

References

Software Reading

$$A_{ij} = \left\{ \begin{array}{ll} 1; & ij \in E, \\ 0; & \text{otherwise.} \end{array} \right.$$

7 / 56

Adjacency matrix

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR] Community detection [mPW]

References

$A_{ij} = \begin{cases} 1; \\ 0; \end{cases}$	$ij \in E$, otherwise.
---	-------------------------

Adjacency matrix

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR] Community detection [mPW]

References

$A_{ij} = \begin{cases} 1; \\ 0; \end{cases}$	$ij \in E$, otherwise.
---	-------------------------

Adjacency matrix

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR] Community detection [mPW]

References

Software Reading

$$A_{ij} = \left\{ \begin{array}{ll} 1; & ij \in E, \\ 0; & \text{otherwise.} \end{array} \right.$$

7 / 56

Adjacency matrix

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR] Community detection [mPW]

References

$A_{ij} = \begin{cases} 1; \\ 0; \end{cases}$	$ij \in E$, otherwise.
---	-------------------------

Adjacency matrix

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR] Community detection [mPW]

References

$A_{ij} = \begin{cases} 1; \\ 0; \end{cases}$	$ij \in E$, otherwise.
---	-------------------------

Adjacency list

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Γ001000000000
10000000000000
01000001100
000000010000
0100000000000
000000010000
000010100000
000100000000
00010000011
000000000100
L0000000000100J

Adjacency list

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software

Reading

A

Adjacency list

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software

Reading

Adjacency list

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software

Reading

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Alternatives

- **Adjacency trees** (quick performance on average)
- Edge lists (compact representation)
- Binary heaps (efficient storage of values/weights)

Barbara Ikica

Motivation

Network algorithms

Data representation

Examples

Community detection [mPW]

References

Software

Reading

Complexity

Computational complexity

Computational resources (time, space, memory) needed to run an algorithm.

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR] Community detection [mPW]

References

Software

Complexity

Computational complexity

Computational resources (time, space, memory) needed to run an algorithm.

Time complexity

An estimate how the running time scales with the input.

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR] Community detection

References

Complexity

Computational complexity

Computational resources (time, space, memory) needed to run an algorithm.

Time complexity

An estimate how the running time scales with the input.

Example: finding the highest degree

DA \boldsymbol{B}

Vertex degrees: 5 3

3 3

Current highest degree: 0

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR] Community detection [mPW]

References

Software Reading

Complexity

Computational complexity

Computational resources (time, space, memory) needed to run an algorithm.

Time complexity

An estimate how the running time scales with the input.

Example: finding the highest degree

Vertex degrees:

Current highest degree:

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR] Community detection [mPW]

References

Software Reading

Complexity

Computational complexity

Computational resources (time, space, memory) needed to run an algorithm.

Time complexity

An estimate how the running time scales with the input.

Example: finding the highest degree

Vertex degrees:

Current highest degree: 5

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR] Community detection [mPW]

References

Software Reading

Complexity

Computational complexity

Computational resources (time, space, memory) needed to run an algorithm.

Time complexity

An estimate how the running time scales with the input.

Example: finding the highest degree

Vertex degrees:533Current highest degree:5

3

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR] Community detection [mPW]

References

Software Reading

Complexity

Computational complexity

Computational resources (time, space, memory) needed to run an algorithm.

Time complexity

An estimate how the running time scales with the input.

Example: finding the highest degree

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR] Community detection [mPW]

References

Software Reading

Complexity

Computational complexity

Computational resources (time, space, memory) needed to run an algorithm.

Time complexity

An estimate how the running time scales with the input.

Example: finding the highest degree

Vertex degrees: Highest degree:

5 3 3 3 5

Time complexity:

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR] Community detection [mPW]

References

Software Reading

Complexity

Computational complexity

Computational resources (time, space, memory) needed to run an algorithm.

Time complexity

An estimate how the running time scales with the input.

Example: $\mathcal{O}(|V|^4)$

 |V|
 Running time

 1000 (test network)
 1 second

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR] Community detection [mPW]

References

Software Reading

Complexity

Computational complexity

Computational resources (time, space, memory) needed to run an algorithm.

Time complexity

An estimate how the running time scales with the input.

Example: $\mathcal{O}(|V|^4)$

V	Running time
1000 (test network)	1 second
10^{6}	pprox 30,000 years

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR] Community detection [mPW]

References

Software Reading

Complexity

Computational complexity

Computational resources (time, space, memory) needed to run an algorithm.

Time complexity

An estimate how the running time scales with the input.

Example: $\mathcal{O}(|V|^4)$

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR] Community detection [mPW]

References

Software Reading

Complexity

Computational complexity

Computational resources (time, space, memory) needed to run an algorithm.

Time complexity

An estimate how the running time scales with the input.

Example: $\mathcal{O}(|V|^4)$

Key takeaway

Always pre-estimate the running time (test run first, scale up appropriately).

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software

Reading

Closeness centrality

Centrality index

A measure of *importance*, *influence*, or *power* of a vertex/edge in a network.

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Centrality index

A measure of *importance*, *influence*, or *power* of a vertex/edge in a network.

Service facility location problem

Closeness centrality

Where should we place a shopping mall to minimise the total distance to all customers in the region?
Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Centrality index

A measure of *importance*, *influence*, or *power* of a vertex/edge in a network.

Service facility location problem

Closeness centrality

Where should we place a shopping mall to minimise the total distance to all customers in the region?

Closeness centrality

$$c_C(u) = \left(\sum_{v \in V} d(u, v)\right)^{-1}$$

Breadth-first search

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

000000 007 0 0 0 0 1 0 0 0000 0 0 0 0.0 0 0 00000 $0\ 0\ 1$ 0 $0 \bot$

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading ion

Breadth-first search

Breadth-first search

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Breadth-first search Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Community detection [mPW]

References

Software Reading

Breadth-first search

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Breadth-first search

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Breadth-first search

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

$$-1$$
 0 -1 1 -1 1 -1 1 -1 2 2 -1 -1

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Breadth-first search

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software

Reading

 $\begin{bmatrix} -1 & 0 & -1 & 1 & -1 & 1 & -1 & -1 & 2 & 2 & 3 & 3 \end{bmatrix}$

Breadth-first search

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

 $\begin{bmatrix} -1 & 0 & -1 & 1 & -1 & 1 & -1 & -1 & 2 & 2 & 3 & 3 \end{bmatrix}$

Breadth-first search

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software

Reading

 $\begin{bmatrix} -1 & 0 & -1 & 1 & -1 & 1 & -1 & -1 & 2 & 2 & 3 & 3 \end{bmatrix}$

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software

Reading

Breadth-first search

• Recovers connected components

Breadth-first search

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software

Reading

- Recovers connected components
- Can be easily extended to find the corresponding shortest paths as well

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software

Reading

- Recovers connected components
- Can be easily extended to find the corresponding shortest paths as well
- Naïve implementation: O(|V| + r|V| + |V| · |E|/|V|) (worst case: r = n; most networks in practice: r = log n)

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Softwar

Reading

- Recovers connected components
- Can be easily extended to find the corresponding shortest paths as well
- Naïve implementation: $\mathcal{O}(|V| + r|V| + |V| \cdot |E|/|V|)$ (worst case: r = n; most networks in practice: $r = \log n$)
- Optimised code: $\mathcal{O}(|V| + |V| \cdot |E|/|V|)$ (sparse networks: $\mathcal{O}(|V|)$, dense networks: $\mathcal{O}(|V|^2)$)

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

${\sf Centrality\ indices\ [PR]}$

Community detection [mPW]

References

Software

Reading

- Recovers connected components
- Can be easily extended to find the corresponding shortest paths as well
- Naïve implementation: $\mathcal{O}(|V| + r|V| + |V| \cdot |E|/|V|)$ (worst case: r = n; most networks in practice: $r = \log n$)
- Optimised code: $\mathcal{O}(|V| + |V| \cdot |E|/|V|)$ (sparse networks: $\mathcal{O}(|V|)$, dense networks: $\mathcal{O}(|V|^2)$)
- Closeness centrality $c_C(u)$ for $u \in V$: $\mathcal{O}(|V| + |E|)$

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software

Reading

- Recovers connected components
- Can be easily extended to find the corresponding shortest paths as well
- Naïve implementation: $\mathcal{O}(|V| + r|V| + |V| \cdot |E|/|V|)$ (worst case: r = n; most networks in practice: $r = \log n$)
- Optimised code: $\mathcal{O}(|V| + |V| \cdot |E|/|V|)$ (sparse networks: $\mathcal{O}(|V|)$, dense networks: $\mathcal{O}(|V|^2)$)
- Closeness centrality $c_C(u)$ for $u \in V$: $\mathcal{O}(|V| + |E|)$
- Shortest paths on weighted networks: Dijkstra's algorithm

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

PageRank

PageRank

$$c_{\mathrm{PR}}(u) = d \sum_{v \in \mathcal{N}^{-}(u)} \frac{c_{\mathrm{PR}}(v)}{\deg^{+}(v)} + (1-d)$$

Brin, S. & Page, L. The Anatomy of a Large-Scale Hypertextual Web Search Engine. *Computer Networks and ISDN Systems* **30**(1–7) (1998), 107–117.

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Motivation for the mPW algorithm

A proper colouring is an assignment of colours to the vertices of a graph so that no two adjacent vertices have the same colour, i.e., $c: V \to \{1, 2, ..., k\}$ s.t. $c(i) \neq c(j)$ for all $ij \in E$.

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation Computational complexit

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Motivation for the mPW algorithm

A proper colouring is an assignment of colours to the vertices of a graph so that no two adjacent vertices have the same colour, i.e., $c: V \to \{1, 2, ..., k\}$ s.t. $c(i) \neq c(j)$ for all $ij \in E$.

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Motivation for the mPW algorithm

A proper colouring is an assignment of colours to the vertices of a graph so that no two adjacent vertices have the same colour, i.e., $c: V \to \{1, 2, ..., k\}$ s.t. $c(i) \neq c(j)$ for all $ij \in E$.

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Motivation for the mPW algorithm

A proper colouring is an assignment of colours to the vertices of a graph so that no two adjacent vertices have the same colour, i.e., $c: V \to \{1, 2, ..., k\}$ s.t. $c(i) \neq c(j)$ for all $ij \in E$.

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation Computational complexit

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Motivation for the mPW algorithm

A proper colouring is an assignment of colours to the vertices of a graph so that no two adjacent vertices have the same colour, i.e., $c: V \to \{1, 2, ..., k\}$ s.t. $c(i) \neq c(j)$ for all $ij \in E$.

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation Computational complexit

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Motivation for the mPW algorithm

A proper colouring is an assignment of colours to the vertices of a graph so that no two adjacent vertices have the same colour, i.e., $c: V \to \{1, 2, ..., k\}$ s.t. $c(i) \neq c(j)$ for all $ij \in E$.

Petford–Welsh algorithm

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Petford–Welsh algorithm

Petford, A. D. & Welsh, D. J. A. A Randomised 3-Colouring Algorithm, *Discrete Math.* **74** (1989), 253–261.

Žerovnik, J. A Randomized Algorithm for *k*-Colorability, *Discrete Math.* **131** (1994), 379–393.

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detecti ImPWI

References

Software Reading

Petford–Welsh algorithm

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

Community detect

References

Software Reading

Petford–Welsh algorithm

A randomised k-colouring algorithm

1. get initial k-colouring

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

Community detec [mPW]

References

Software Reading

Petford–Welsh algorithm

A randomised k-colouring algorithm

1. get initial k-colouring

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community dete [mPW]

References

Software Reading

Petford–Welsh algorithm

- 1. get initial k-colouring
- 2. while (there is a bad vertex) and (not too many steps) repeat

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community dete [mPW]

References

Software Reading

Petford–Welsh algorithm

- 1. get initial k-colouring
- 2. while (there is a *bad vertex*) and (not too many steps) repeat

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community dete [mPW]

References

Software Reading

Petford–Welsh algorithm

- 1. get initial k-colouring
- 2. while (there is a *bad vertex*) and (not too many steps) repeat

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detec [mPW]

References

Software Reading

Petford–Welsh algorithm

- 1. get initial k-colouring
- 2. while (there is a bad vertex) and (not too many steps) repeat
 - 2.1 choose a bad vertex v uniformly at random

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detec [mPW]

References

Software Reading

Petford–Welsh algorithm

- 1. get initial k-colouring
- 2. while (there is a bad vertex) and (not too many steps) repeat
 - 2.1 choose a bad vertex v uniformly at random

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detect [mPW]

References

Software Reading

Petford–Welsh algorithm

- 1. get initial k-colouring
- 2. while (there is a bad vertex) and (not too many steps) repeat
 - $2.1\;$ choose a bad vertex v uniformly at random
 - 2.2 choose a new colour *i* for *v* proportionally to $\omega^{-\mathcal{N}(v,i)}$ where $\omega > 1$ and $\mathcal{N}(v,i) = \#$ neighbours of *v* of colour *i*

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detect [mPW]

References

Software Reading

Petford–Welsh algorithm

- 1. get initial k-colouring
- 2. while (there is a bad vertex) and (not too many steps) repeat
 - 2.1~ choose a bad vertex v uniformly at random
 - 2.2 choose a new colour i for v proportionally to $\omega^{-\mathcal{N}(v,i)}$ where $\omega>1$ and $\mathcal{N}(v,i)=\#\text{neighbours}$ of v of colour i

$\mathcal{N}(9,r) = 1$
$\mathcal{N}(9,b) = 2$
$\mathcal{N}(9,y) = 0$
Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detect [mPW]

References

Software Reading

Petford–Welsh algorithm

- 1. get initial k-colouring
- 2. while (there is a *bad vertex*) and (not too many steps) repeat
 - 2.1 choose a bad vertex v uniformly at random
 - 2.2 choose a new colour i for v proportionally to $\omega^{-\mathcal{N}(v,i)}$ where $\omega>1$ and $\mathcal{N}(v,i)=\#\text{neighbours}$ of v of colour i

$\mathcal{N}(9,r) = 1$
$\mathcal{N}(9,b) = 2$
$\mathcal{N}(9,y) = 0$

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detect [mPW]

References

Software Reading

Petford–Welsh algorithm

- 1. get initial k-colouring
- 2. while (there is a bad vertex) and (not too many steps) repeat
 - $2.1\;$ choose a bad vertex v uniformly at random
 - 2.2 choose a new colour i for v proportionally to $\omega^{-\mathcal{N}(v,i)}$ where $\omega > 1$ and $\mathcal{N}(v,i) = \#$ neighbours of v of colour i

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detect [mPW]

References

Software Reading

Petford–Welsh algorithm

- 1. get initial k-colouring
- 2. while (there is a bad vertex) and (not too many steps) repeat
 - $2.1\;$ choose a bad vertex v uniformly at random
 - 2.2 choose a new colour i for v proportionally to $\omega^{-\mathcal{N}(v,i)}$ where $\omega > 1$ and $\mathcal{N}(v,i) = \#$ neighbours of v of colour i

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detect [mPW]

References

Software Reading

Petford–Welsh algorithm

- 1. get initial k-colouring
- 2. while (there is a bad vertex) and (not too many steps) repeat
 - $2.1\;$ choose a bad vertex v uniformly at random
 - 2.2 choose a new colour i for v proportionally to $\omega^{-\mathcal{N}(v,i)}$ where $\omega > 1$ and $\mathcal{N}(v,i) = \#$ neighbours of v of colour i

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detect [mPW]

References

Software Reading

Petford–Welsh algorithm

- 1. get initial k-colouring
- 2. while (there is a bad vertex) and (not too many steps) repeat
 - $2.1\;$ choose a bad vertex v uniformly at random
 - 2.2 choose a new colour *i* for *v* proportionally to $\omega^{-\mathcal{N}(v,i)}$ where $\omega > 1$ and $\mathcal{N}(v,i) = \#$ neighbours of *v* of colour *i*

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detect [mPW]

References

Software Reading

Petford–Welsh algorithm

- 1. get initial k-colouring
- 2. while (there is a bad vertex) and (not too many steps) repeat
 - $2.1\;$ choose a bad vertex v uniformly at random
 - 2.2 choose a new colour *i* for *v* proportionally to $\omega^{-\mathcal{N}(v,i)}$ where $\omega > 1$ and $\mathcal{N}(v,i) = \#$ neighbours of *v* of colour *i*

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detectio

References

Software Reading

Petford–Welsh algorithm

- 1. get initial k-colouring
- 2. while (there is a bad vertex) and (not too many steps) repeat
 - 2.1 choose a bad vertex v uniformly at random
 - 2.2 choose a new colour i for v proportionally to $\omega^{-\mathcal{N}(v,i)}$ where $\omega>1$ and $\mathcal{N}(v,i)=\#\text{neighbours}$ of v of colour i

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detect [mPW]

References

Software Reading

Petford–Welsh algorithm

- 1. get initial k-colouring
- 2. while (there is a bad vertex) and (not too many steps) repeat
 - $2.1\;$ choose a bad vertex v uniformly at random
 - 2.2 choose a new colour *i* for *v* proportionally to $\omega^{-\mathcal{N}(v,i)}$ where $\omega > 1$ and $\mathcal{N}(v,i) = \#$ neighbours of *v* of colour *i*

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detecti [mPW]

References

Software Reading

Petford–Welsh algorithm

The Petford-Welsh algorithm ...

- ... mimics the behaviour of a physical process based on a multi-particle system in statistical mechanics (*the antivoter model* by Donnely and Welsh),
- ... acts locally; thus, it is highly parallelisable,
- ... has the weak convergence property: If $k > \chi(G)$, there is a positive probability that the algorithm finds a proper k-colouring in a finite number of steps (regardless of the initial colouring).

Networks and Algorithms Barbara Ikica

Petford–Welsh Algorithm

Motivation

Outline

Network algorithms

Data representation Computational complexity

Examples

Centrality indices [PR]

Community detection

References

Software Reading

Proposition

A suitably defined parallel variant of the algorithm with a positive probability finds a proper colouring in one (parallel) step starting from any initial colouring, provided that a proper colouring exists.

Consequence

If we increase the number of steps of the algorithm, the probability of reaching a proper colouring becomes as close to 1 as desired.

Žerovnik, J. & Kaufman, M. A parallel variant of a heuristical algorithm for graph coloring – Corrigendum, *Parallel Comput.* **18** (1993), 897–900.

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community de [mPW]

References

Software Reading

Clustering

Partitioning or grouping data into "similar" subsets.

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Clustering

Partitioning or grouping data into "similar" subsets.

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Clustering

Partitioning or grouping data into "similar" subsets.

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Clustering

A partitioning clustering method separates a given set of objects $X = \{x_1, x_2, \dots, x_n\}$ into non-overlapping groups/clusters $C = \{C_1, C_2, \dots, C_m\}$ that satisfy

Clustering

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

A partitioning clustering method separates a given set of objects $X = \{x_1, x_2, \dots, x_n\}$ into non-overlapping groups/clusters $C = \{C_1, C_2, \dots, C_m\}$ that satisfy • $C_i \neq \emptyset$ for all $1 \le i \le m$.

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Clustering

A partitioning clustering method separates a given set of objects $X = \{x_1, x_2, \dots, x_n\}$ into non-overlapping groups/clusters $C = \{C_1, C_2, \dots, C_m\}$ that satisfy • $C_i \neq \emptyset$ for all $1 \le i \le m$, • $\bigcup_{i=1}^m C_i = X$,

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Clustering

A partitioning clustering method separates a given set of objects $X = \{x_1, x_2, \dots, x_n\}$ into non-overlapping groups/clusters $C = \{C_1, C_2, \dots, C_m\}$ that satisfy

•
$$C_i \neq \emptyset$$
 for all $1 \le i \le m$,

•
$$\cup_{i=1}^m C_i = X$$
,

•
$$C_i \cap C_j = \emptyset$$
 for all $1 \le i < j \le m$.

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection

References

Software Reading

An adaptation of the Petford-Welsh algorithm

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

Community detection

References

Software Reading

An adaptation of the Petford-Welsh algorithm

A randomised *clustering* algorithm [https://github.com/ikicab/mPW]

1. get initial k-clustering

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

Community detectio

References

Software Reading

An adaptation of the Petford-Welsh algorithm

A randomised *clustering* algorithm [https://github.com/ikicab/mPW]

1. get initial k-clustering

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

Community dete [mPW]

References

Software Reading

An adaptation of the Petford–Welsh algorithm

- 1. get initial k-clustering
- 2. while (there is a *bad vertex*) and ($Var[bad edges] \ge tol$) repeat

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

An adaptation of the Petford–Welsh algorithm

- 1. get initial k-clustering
- 2. while (there is a *bad vertex*) and ($Var[bad edges] \ge tol$) repeat
 - $2.1 \;$ choose a bad vertex v uniformly at random

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

Community dete [mPW]

References

Software Reading

An adaptation of the Petford–Welsh algorithm

- 1. get initial k-clustering
- 2. while (there is a *bad vertex*) and ($Var[bad edges] \ge tol$) repeat
 - $2.1\,$ choose a bad vertex v uniformly at random

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

An adaptation of the Petford–Welsh algorithm

- 1. get initial k-clustering
- 2. while (there is a *bad vertex*) and ($Var[bad edges] \ge tol$) repeat
 - $2.1 \;$ choose a bad vertex v uniformly at random
 - 2.2 choose a new colour i for v proportionally to $\omega^{+\mathcal{N}(v,i)}$ where $\omega>1$ and $\mathcal{N}(v,i)=\#\text{neighbours of }v$ of colour i

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

An adaptation of the Petford–Welsh algorithm

- 1. get initial k-clustering
- 2. while (there is a *bad vertex*) and ($Var[bad edges] \ge tol$) repeat
 - 2.1 choose a bad vertex v uniformly at random
 - 2.2 choose a new colour i for v proportionally to $\omega^{+\mathcal{N}(v,i)}$ where $\omega>1$ and $\mathcal{N}(v,i)=\#\text{neighbours}$ of v of colour i

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

An adaptation of the Petford–Welsh algorithm

- 1. get initial k-clustering
- 2. while (there is a *bad vertex*) and ($Var[bad edges] \ge tol$) repeat
 - 2.1 choose a bad vertex v uniformly at random
 - 2.2 choose a new colour i for v proportionally to $\omega^{+\mathcal{N}(v,i)}$ where $\omega>1$ and $\mathcal{N}(v,i)=\#\text{neighbours}$ of v of colour i

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

An adaptation of the Petford–Welsh algorithm

- 1. get initial k-clustering
- 2. while (there is a *bad vertex*) and ($Var[bad edges] \ge tol$) repeat
 - $2.1 \;$ choose a bad vertex v uniformly at random
 - 2.2 choose a new colour i for v proportionally to $\omega^{+\mathcal{N}(v,i)}$ where $\omega>1$ and $\mathcal{N}(v,i)=\#\text{neighbours}$ of v of colour i

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

An adaptation of the Petford–Welsh algorithm

- 1. get initial k-clustering
- 2. while (there is a *bad vertex*) and ($Var[bad edges] \ge tol$) repeat
 - 2.1 choose a bad vertex v uniformly at random
 - 2.2 choose a new colour i for v proportionally to $\omega^{+\mathcal{N}(v,i)}$ where $\omega>1$ and $\mathcal{N}(v,i)=\#\text{neighbours}$ of v of colour i

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

An adaptation of the Petford–Welsh algorithm

- 1. get initial k-clustering
- 2. while (there is a *bad vertex*) and ($Var[bad edges] \ge tol$) repeat
 - $2.1 \;$ choose a bad vertex v uniformly at random
 - 2.2 choose a new colour i for v proportionally to $\omega^{+\mathcal{N}(v,i)}$ where $\omega>1$ and $\mathcal{N}(v,i)=\#\text{neighbours}$ of v of colour i

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

An adaptation of the Petford–Welsh algorithm

- 1. get initial k-clustering
- 2. while (there is a *bad vertex*) and ($Var[bad edges] \ge tol$) repeat
 - $2.1 \;$ choose a bad vertex v uniformly at random
 - 2.2 choose a new colour i for v proportionally to $\omega^{+\mathcal{N}(v,i)}$ where $\omega>1$ and $\mathcal{N}(v,i)=\#\text{neighbours}$ of v of colour i

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

An adaptation of the Petford–Welsh algorithm

- 1. get initial k-clustering
- 2. while (there is a *bad vertex*) and ($Var[bad edges] \ge tol$) repeat
 - 2.1 choose a bad vertex v uniformly at random
 - 2.2 choose a new colour i for v proportionally to $\omega^{+\mathcal{N}(v,i)}$ where $\omega>1$ and $\mathcal{N}(v,i)=\#\text{neighbours}$ of v of colour i

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

An adaptation of the Petford–Welsh algorithm

- 1. get initial k-clustering
- 2. while (there is a *bad vertex*) and ($Var[bad edges] \ge tol$) repeat
 - 2.1 choose a bad vertex v uniformly at random
 - 2.2 choose a new colour i for v proportionally to $\omega^{+\mathcal{N}(v,i)}$ where $\omega>1$ and $\mathcal{N}(v,i)=\#\text{neighbours}$ of v of colour i

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

An adaptation of the Petford–Welsh algorithm

- 1. get initial k-clustering
- 2. while (there is a *bad vertex*) and ($Var[bad edges] \ge tol$) repeat
 - 2.1 choose a bad vertex v uniformly at random
 - 2.2 choose a new colour i for v proportionally to $\omega^{+\mathcal{N}(v,i)}$ where $\omega>1$ and $\mathcal{N}(v,i)=\#\text{neighbours}$ of v of colour i

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

An adaptation of the Petford–Welsh algorithm

- 1. get initial k-clustering
- 2. while (there is a *bad vertex*) and ($Var[bad edges] \ge tol$) repeat
 - $2.1 \;$ choose a bad vertex v uniformly at random
 - 2.2 choose a new colour i for v proportionally to $\omega^{+\mathcal{N}(v,i)}$ where $\omega>1$ and $\mathcal{N}(v,i)=\#\text{neighbours}$ of v of colour i

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

An adaptation of the Petford–Welsh algorithm

- 1. get initial k-clustering
- 2. while (there is a *bad vertex*) and ($Var[bad edges] \ge tol$) repeat
 - 2.1 choose a bad vertex v uniformly at random
 - 2.2 choose a new colour i for v proportionally to $\omega^{+\mathcal{N}(v,i)}$ where $\omega>1$ and $\mathcal{N}(v,i)=\#\text{neighbours}$ of v of colour i

Stopping condition

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community det [mPW]

References

Software Reading

Run 1 Run 2 500 Run 3 Run 4 Run 5 400 Run 6 Bad edges Run 7 300 Run 8 Run 9 Run 10 200 100 ò 100 200 300 400 500 Iteration step

 $\mathrm{Var}\left(\texttt{bad_edges}\left[\texttt{step}-l+1:\texttt{step}\right]\right) < \texttt{tol}$
Barbara Ikica

Motivation

Outline

Network algorithms

Data representation Computational complexity

Examples

Centrality indices [PR]

Community detection

References

Software Reading

Fine-tuning

Problems

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation Computational complexity

Examples

Centrality indices [PR]

Community detect

References

Software Reading

Fine-tuning

Problems

• different clusters get assigned the same colour due to random seeds

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation Computational complexity

Examples

Centrality indices [PR]

Community detec [mPW]

References

Software Reading

Fine-tuning

Problems

• different clusters get assigned the same colour due to random seeds

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

Community detect

References

Software Reading

Fine-tuning

Problems

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

Community detec [mPW]

References

Software Reading

Fine-tuning

Problems

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

Community detect

References

Software Reading

Fine-tuning

Problems

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

Community detect

References

Software Reading

Fine-tuning

Problems

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

Community detec [mPW]

References

Software Reading

Fine-tuning

Problems

• different clusters get assigned the same colour due to random seeds [Average co-membership matrix: for each clustering solution c, $C_c(i, j) = 1$ iff i and j belong to the same cluster (else 0)]

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

Community detec [mPW]

References

Software Reading

Fine-tuning

Problems

• different clusters get assigned the same colour due to random seeds [Average co-membership matrix: for each clustering solution c, $C_c(i, j) = 1$ iff i and j belong to the same cluster (else 0)]

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

Community detec [mPW]

References

Software Reading

Fine-tuning

Problems

• different clusters get assigned the same colour due to random seeds [Average *co-membership matrix*: for each clustering solution c, $C_c(i, j) = 1$ iff i and j belong to the same cluster (else 0)]

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

[mPW]

References

Software Reading

Fine-tuning

Problems

• different clusters get assigned the same colour due to random seeds [Average co-membership matrix: for each clustering solution c, $C_c(i, j) = 1$ iff i and j belong to the same cluster (else 0)]

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

Community detec [mPW]

References

Software Reading

Fine-tuning

Problems

• different clusters get assigned the same colour due to random seeds [Average *co-membership matrix*: for each clustering solution c, $C_c(i, j) = 1$ iff i and j belong to the same cluster (else 0)]

Quality measures

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Internal indices

The clustering is judged on the basis of certain intrinsic statistical properties of the clustering itself.

Modularity, conductance, coverage

Quality measures

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Internal indices

The clustering is judged on the basis of certain intrinsic statistical properties of the clustering itself.

Modularity, conductance, coverage

External indices

The clustering is compared to a user-given gold-standard clustering (using a pairwise/mapping approach).

Normalised mutual information, adjusted mutual information, adjusted Rand index, F_{β} score, Fowlkes–Mallows index, Jaccard index, V-measure

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation Computational complexi

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Quality measures / Internal indices

Modularity

$$\boxed{Q = \frac{1}{2|E|} \sum_{u,v \in V} \left(a_{uv} - \frac{k_u k_v}{2|E|} \right) \delta(c_u, c_v)}$$

Compares the presence of each intra-cluster edge with the probability of this edge in a random graph

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation Computational complexi

Examples

Centrality indices [PR]

Community detection

References

Software

Reading

Quality measures / Internal indices

Modularity

$$\boxed{Q = \frac{1}{2|E|} \sum_{u,v \in V} \left(a_{uv} - \frac{k_u k_v}{2|E|}\right) \delta(c_u, c_v)}$$

Compares the presence of each intra-cluster edge with the probability of this edge in a random graph

Coverage

$$\gamma = \frac{\sum_{u,v \in V} a_{uv} \delta(c_u, c_v)}{\sum_{u,v \in V} a_{uv}}$$

A measure of intra-cluster density

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

.

Community detection

[mPW]

References

Software Reading

Quality measures / Internal indices

Conductance

$$\phi = 1 - \frac{1}{|\mathcal{C}|} \sum_{C_i \in \mathcal{C}} \phi(C_i)$$

$$\phi(C_i) = \frac{\sum_{u \in C_i, v \notin C_i} a_{uv}}{\min\left\{\sum_{u \in C_i, v \in V} a_{uv}, \sum_{u \notin C_i, v \in V} a_{uv}\right\}}$$

A measure of inter-cluster sparsity

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community de [mPW]

References

Software Reading

Quality measures / External indices

Normalized mutual information

$$\mathrm{NMI}(\mathcal{C},\mathcal{G}) = \frac{\mathrm{MI}(\mathcal{C},\mathcal{G})}{\sqrt{\mathrm{H}(\mathcal{C})\mathrm{H}(\mathcal{G})}}$$

$$\begin{split} \mathrm{MI}(\mathcal{C},\mathcal{G}) &= \mathrm{H}(\mathcal{C}) + \mathrm{H}(\mathcal{G}) - \mathrm{H}(\mathcal{C},\mathcal{G}) \\ \mathrm{H}(\mathcal{C}_i) &= -\sum_{C \in \mathcal{C}_i} \frac{|C|}{|V|} \log \frac{|C|}{|V|} \\ \mathrm{H}(\mathcal{C},\mathcal{G}) &= -\sum_{C_i \in \mathcal{C}, G_i \in \mathcal{G}} \frac{|C_i \cap G_j|}{|V|} \log \frac{|C_i \cap G_j|}{|V|} \end{split}$$

A measure of "information overlap" between ${\mathcal C}$ and ${\mathcal G}$

Quality measures / External indices

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detec [mPW]

References

Software Reading

Adjusted mutual information
$$AMI = \frac{MI(\mathcal{C}, \mathcal{G}) - \mathbb{E}[MI(\mathcal{C}, \mathcal{G})]}{\sqrt{H(\mathcal{C})H(\mathcal{G})} - \mathbb{E}[MI(\mathcal{C}, \mathcal{G})]}$$

A measure of "information overlap" between ${\mathcal C}$ and ${\mathcal G}$ adjusted for chance

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Quality measures / External indices

Adjusted Rand index

$$ARI(\mathcal{C},\mathcal{G}) = \frac{RI(\mathcal{C},\mathcal{G}) - E[RI(\mathcal{C},\mathcal{G})]}{\max(RI(\mathcal{C},\mathcal{G})) - E[RI(\mathcal{C},\mathcal{G})]} = \frac{2(TP \cdot TN - FP \cdot FN)}{(TN + FP)(FP + TP) + (TN + FN)(FN + TP)}$$

A measure of the level of agreement between ${\cal C}$ and ${\cal G}$ as the fraction of agreeing pairs of vertices to all possible pairs of vertices

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Quality measures / External indices

F_{β} score

$$F_{\beta} = \frac{(1+\beta^2) \cdot TP}{(1+\beta^2) \cdot TP + \beta^2 \cdot FN + FP}$$

Weighted harmonic mean of precision and recall

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation Computational complexi

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Quality measures / External indices

F_{β} score

$$F_{\beta} = \frac{(1+\beta^2) \cdot TP}{(1+\beta^2) \cdot TP + \beta^2 \cdot FN + FP}$$

Weighted harmonic mean of precision and recall

Fowlkes-Mallows index

$$\mathrm{FM} = \sqrt{\frac{TP}{TP + FP} \cdot \frac{TP}{TP + FN}}$$

Geometric mean of precision and recall

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community dete [mPW]

References

Software Reading

Quality measures / External indices

Jaccard index

$$F_{\beta} = \frac{(1+\beta^2) \cdot TP}{(1+\beta^2) \cdot TP + \beta^2 \cdot FN + FP}$$

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

.

Community indices [1 (1]

[mPW]

References

Software Reading

Quality measures / External indices

Jaccard index

$$F_{\beta} = \frac{(1+\beta^2) \cdot TP}{(1+\beta^2) \cdot TP + \beta^2 \cdot FN + FP}$$

V-measure

$$\mathbf{V}_{\beta} = (1+\beta) \frac{ho \cdot cp}{\beta \cdot ho + cp}$$

Harmonic mean of homogeneity $h\boldsymbol{o}$ and completeness cp of the clustering solution

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Experiments

Zachary (|V| = 34, |E| = 78)

Ties amongst the members of a university karate club by Wayne Zachary.

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Experiments

Zachary (|V| = 34, |E| = 78)

Ties amongst the members of a university karate club by Wayne Zachary.

Experiments / Zachary's karate club

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Method	NMI	ARI	ϕ	γ	Q	$ \mathcal{C} $
Edge bet.	0.517	0.392	0.424	0.692	0.401	5
Fastgreedy	0.576	0.568	0.574	0.756	0.381	3
Infomap	0.578	0.591	0.668	0.821	0.402	3
Label prop.	0.865	0.882	0.773	0.949	0.415	3
Leading eig.	0.612	0.435	0.487	0.667	0.393	4
Multilevel	0.516	0.392	0.558	0.731	0.419	4
Spinglass	0.627	0.509	0.563	0.756	0.420	4
Walktrap	0.531	0.321	0.434	0.590	0.353	5
mPW	1.000	1.000	0.773	0.949	0.403	2

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

Community detectio [mPW]

References

Software Reading

Experiments

UK faculty (|V| = 34, |E| = 78)

The personal friendship network of a faculty of a UK university; the school affiliation of each individual is stored as a vertex attribute.

Experiments / UK faculty

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Method	NMI	ARI	ϕ	γ	Q	$ \mathcal{C} $
Edge bet.	0.796	0.825	0.513	0.827	0.413	4
Fastgreedy	0.849	0.820	0.553	0.775	0.444	4
Infomap	0.862	0.875	0.709	0.841	0.432	3
Label prop.	0.862	0.875	0.709	0.953	0.432	3
Leading eig.	0.863	0.871	0.488	0.768	0.397	4
Multilevel	0.802	0.796	0.573	0.749	0.449	4
Spinglass	0.872	0.842	0.573	0.749	0.449	4
Walktrap	0.862	0.875	0.709	0.841	0.432	3
mPW	0.911	0.918	0.741	0.953	0.432	3

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Examples

Centrality indices [PR]

Community detect [mPW]

References

Software Reading

Experiments

American college football (|V| = 115, |E| = 613)

A network of regular season games between teams divided into 12 conferences.

Experiments / American college football

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Method	NMI	ARI	ϕ	γ	Q	$ \mathcal{C} $
Edge bet.	0.880	0.778	0.533	0.710	0.600	10
Fastgreedy	0.708	0.474	0.567	0.731	0.550	6
Multilevel	0.891	0.807	0.547	0.708	0.605	10
Leading eig.	0.703	0.464	0.456	0.641	0.493	8
Infomap	0.924	0.897	0.505	0.690	0.601	12
Label prop.	0.927	0.889	0.568	0.741	0.605	11
Spinglass	0.929	0.900	0.563	0.728	0.605	11
Walktrap	0.888	0.815	0.547	0.705	0.603	10
mPW	0.936	0.900	0.600	0.780	0.603	9

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation Computational complexit

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Experiments

Political blogs (|V| = 1222, |E| = 16714)

Interactions between liberal and conservative blogs over the period of two months preceding the U.S. Presidential Election of 2004.

Method	NMI	ARI	ϕ	γ	Q	$ \mathcal{C} $
Edge bet.	_	_	_	_	_	_
Fastgreedy	0.659	0.785	0.451	0.923	0.427	10
Infomap	0.523	0.651	0.250	0.899	0.423	41
Label prop.	0.723	0.813	0.857	1.000	0.426	3
Leading eig.	0.693	0.781	0.854	0.926	0.424	2
Multilevel	0.651	0.774	0.476	0.920	0.427	9
Spinglass	0.649	0.783	0.315	0.922	0.427	15
Walktrap	0.646	0.760	0.484	0.925	0.425	11
mPW	0.732	0.820	0.857	0.927	0.426	4

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation Computational complexit

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Experiments

International E-road network (|V| = 1040, |E| = 1305)

An international system for numbering and designating roads stretching throughout Europe and some parts of Central Asia.

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation Computational complexit

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Experiments

International E-road network (|V| = 1040, |E| = 1305)

An international system for numbering and designating roads stretching throughout Europe and some parts of Central Asia.

Experiments / International E-road network

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community det [mPW]

References

Software Reading

Method	ϕ	γ	Q	$ \mathcal{C} $
Edge bet.	_	_	_	_
Fastgreedy	0.860	0.917	0.861	24
Infomap	0.663	0.787	0.777	126
Label prop.	0.731	0.856	0.828	82
Leading eig.	0.794	0.887	0.835	26
Multilevel	0.873	0.921	0.867	24
Spinglass	0.866	0.924	0.872	25
Walktrap	0.757	0.886	0.828	67
mPW	0.945	0.979	0.845	17

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Software Reading

Experiments

U.S. airports (|V| = 745, |E| = 4618)

A network of flights between U.S. airports.

Experiments / U.S. airports

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community dete [mPW]

References

Method	ϕ	γ	Q	$ \mathcal{C} $
Edge bet.	0.155	0.932	0.314	118
Fastgreedy	0.594	0.771	0.431	18
Infomap	0.477	0.913	0.310	49
Label prop.	0.653	0.959	0.258	20
Leading eig.	0.682	0.806	0.410	3
Multilevel	0.617	0.790	0.441	16
Spinglass	0.586	0.773	0.441	17
Walktrap	0.342	0.788	0.337	84
mPW	0.774	0.976	0.285	13

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR

Community detection [mPW]

References

Software Reading

Experiments / Normalised mutual information

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PF

Community detection [mPW]

References

Software Reading

Experiments / Adjusted mutual information

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PF

Community detection [mPW]

References

Software Reading

Experiments / Adjusted Rand index

Experiments / Conductance

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection [mPW]

References

Experiments / Coverage

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR

Community detectio [mPW]

References

Experiments / Modularity

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection

References

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detection

References

Software Reading

LFR benchmark

$$\mathrm{LFR}(|V| = 1000, \gamma = 2, \beta = 1, \texttt{k_avg} = 15, \texttt{k_max} = 100, \texttt{c_min} = 50, \texttt{c_max} = 100)$$

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detecti [mPW]

References

Software Reading

LFR benchmark

$$\mathrm{LFR}(|V|=1000, \gamma=3, \beta=2, \texttt{k_avg}=15, \texttt{k_max}=50)$$

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR]

Community detecti [mPW]

References

Software Reading

LFR benchmark

$$\mathrm{LFR}(|V|=1000, \gamma=2, \beta=1, \texttt{k_avg}=25, \texttt{k_max}=150)$$

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR] Community detection ImPWI

References

Reading

Computer resources

Network analysis and visualisation software

- Pajek (free; large network analysis): http://vlado.fmf.uni-lj.si/pub/networks/pajek/
- Gephi (free; (dynamic) network visualisation): https://gephi.org/
- igraph (free; R/Python/Mathematica/C/C++ network analysis package): https://igraph.org/
- NetworkX (free; Python package for complex networks): https://networkx.github.io/
- SNAP (free; Python/C++ high performance library for large networks): http://snap.stanford.edu/
- Mathematica (commercial): https://reference.wolfram.com/language/guide/GraphsAndNetworks.html
- MATLAB (commercial): https://mathworks.com/help/matlab/graph-and-network-algorithms.html

Network datasets

- Newman: http://www-personal.umich.edu/~mejn/netdata/
- Koblenz Network Collection: http://konect.uni-koblenz.de/networks/
- SuiteSparse Matrix Collection: https://sparse.tamu.edu/
- Network Repository: http://networkrepository.com/
- (BIO)SNAP: http://snap.stanford.edu/data/index.html

Reading

Barbara Ikica

Motivation

Outline

Network algorithms

Data representation

Computational complexity

Examples

Centrality indices [PR] Community detection [mPW]

References

Software

Reading

• Newman, M. E. J. *Networks: An Introduction* (Oxford University Press, New York, NY, 2010).

- Brandes, U. & Erlebach, T. *Network Analysis: Methodological Foundations* (Springer, Berlin, Heidelberg, 2005).
- Ikica, B. Clustering via the Modified Petford–Welsh Algorithm. To appear in Ars Mathematica Contemporanea (AMC).
- Ikica, B., Povh, J. & Žerovnik, J. Clustering as a Dual Problem to Colouring. Submitted.