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Main ingredients

Algorithm
“A set of mathematical instructions or rules that,

especially if given to a computer, will help to calculate
an answer to a problem.”

(Cambridge Dictionary)

Network
“A network is, in its simplest form, a collection of

points joined together in pairs by lines.”
(Newman, Networks: An Introduction, 2010)
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Does there exist a route that crosses each of the seven bridges exactly once?
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Outline

• Network algorithms
◦ data representation
◦ computational complexity

• Examples
◦ Centrality indices – PageRank
◦ Community detection – the

modified Petford–Welsh
algorithm
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Adjacency matrix

0

2

5

1 3

8 4

6 7

9

11
10

A =



0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0



Aij =
{

1; ij ∈ E,
0; otherwise.
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A =
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[3,5]
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[1,8,9]
[7]
[1]
[7]

[4,6]
[3]

[3,10,11]
[9]
[9]
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Alternatives

• Adjacency trees (quick performance on average)
• Edge lists (compact representation)
• Binary heaps (efficient storage of values/weights)
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Complexity

Computational complexity
Computational resources (time, space, memory) needed to run an algorithm.

Time complexity
An estimate how the running time scales with the input.

Example: finding the highest degree

A D

C

B

Vertex degrees: 5 3 3 3

O(|V |)
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Computational complexity
Computational resources (time, space, memory) needed to run an algorithm.

Time complexity
An estimate how the running time scales with the input.

Example: finding the highest degree

A D
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B

Vertex degrees: 5 3 3 35
Current highest degree: 5

O(|V |)
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Complexity

Computational complexity
Computational resources (time, space, memory) needed to run an algorithm.

Time complexity
An estimate how the running time scales with the input.

Example: O(|V |4)

|V | Running time
1000 (test network) 1 second

106 ≈ 30, 000 years
6 · 109 ???

Key takeaway
Always pre-estimate the running time (test run
first, scale up appropriately).
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Closeness centrality

Centrality index
A measure of importance, influence, or power of a
vertex/edge in a network.

Service facility location problem
Where should we place a shopping mall to minimise the total distance to all
customers in the region?

Closeness centrality

cC(u) =

(∑
v∈V

d(u, v)

)−1
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Breadth-first search
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0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0
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]
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Breadth-first search

• Recovers connected components

• Can be easily extended to find the corresponding shortest paths as well
• Naïve implementation: O(|V |+ r|V |+ |V | · |E|/|V |) (worst case: r = n;

most networks in practice: r = logn)
• Optimised code: O(|V |+ |V | · |E|/|V |) (sparse networks: O(|V |), dense

networks: O(|V |2))
• Closeness centrality cC(u) for u ∈ V : O(|V |+ |E|)
• Shortest paths on weighted networks: Dijkstra’s algorithm
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PageRank
cPR(u) = d

∑
v∈N−(u)

cPR(v)
deg+(v) + (1− d)

Brin, S. & Page, L. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. Computer
Networks and ISDN Systems 30(1–7) (1998),
107–117.
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Motivation for the mPW algorithm

A proper colouring is an assignment of colours to the vertices of a graph so
that no two adjacent vertices have the same colour, i.e., c : V → {1, 2, . . . , k}
s.t. c(i) 6= c(j) for all ij ∈ E.

A graph that has a k-colouring is said to be k-colourable.
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Petford–Welsh algorithm

Petford–Welsh algorithm
Petford, A. D. & Welsh, D. J. A. A Randomised 3-Colouring Algorithm,
Discrete Math. 74 (1989), 253–261.

Žerovnik, J. A Randomized Algorithm for k-Colorability, Discrete Math. 131
(1994), 379–393.
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A randomised k-colouring algorithm

1. get initial k-colouring

2. while (there is a ) and (not too many steps) repeat

2.1 choose a bad vertex v uniformly at random
2.2 choose a new colour i for v proportionally to ω−N (v,i) where ω > 1

and N (v, i) = #neighbours of v of colour i
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Petford–Welsh algorithm

The Petford–Welsh algorithm ...
• ... mimics the behaviour of a physical process based on a multi-particle

system in statistical mechanics (the antivoter model by Donnely and
Welsh),

• ... acts locally; thus, it is highly parallelisable,
• ... has the weak convergence property:

If k > χ(G), there is a positive probability that the algorithm finds a proper
k-colouring in a finite number of steps (regardless of the initial colouring).

19 / 56



Networks and
Algorithms

Barbara Ikica

Motivation
Outline

Network
algorithms
Data representation

Computational complexity

Examples
Centrality indices [PR]

Community detection
[mPW]

References
Software

Reading

Petford–Welsh Algorithm

Proposition
A suitably defined parallel variant of the algorithm with a positive probability
finds a proper colouring in one (parallel) step starting from any initial
colouring, provided that a proper colouring exists.

Consequence
If we increase the number of steps of the algorithm, the probability of reaching
a proper colouring becomes as close to 1 as desired.

Žerovnik, J. & Kaufman, M. A parallel variant of a heuristical algorithm for
graph coloring – Corrigendum, Parallel Comput. 18 (1993), 897–900.
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Clustering

Partitioning or grouping data into “similar” subsets.
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Clustering

A partitioning clustering method separates a given set of
objects X = {x1, x2, . . . , xn} into non-overlapping
groups/clusters C = {C1, C2, . . . , Cm} that satisfy

• Ci 6= ∅ for all 1 ≤ i ≤ m,
• ∪mi=1Ci = X,
• Ci ∩ Cj = ∅ for all 1 ≤ i < j ≤ m.
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An adaptation of the Petford–Welsh algorithm

A randomised clustering algorithm [https://github.com/ikicab/mPW]

1. get initial k-clustering

2. while (there is a bad vertex) and (Var [bad edges] ≥ tol) repeat

2.1 choose a bad vertex v uniformly at random
2.2 choose a new colour i for v proportionally to ω+N (v,i) where ω > 1

and N (v, i) = #neighbours of v of colour i
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A randomised clustering algorithm [https://github.com/ikicab/mPW]

1. get initial k-clustering

2. while (there is a bad vertex) and (Var [bad edges] ≥ tol) repeat
2.1 choose a bad vertex v uniformly at random
2.2 choose a new colour i for v proportionally to ω+N (v,i) where ω > 1

and N (v, i) = #neighbours of v of colour i
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Stopping condition

Var (bad_edges [step− l + 1 : step]) < tol
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Fine-tuning

Problems

• different clusters get assigned the same colour due to random seeds
[Average co-membership matrix: for each clustering solution c,
Cc(i, j) = 1 iff i and j belong to the same cluster (else 0)]

• outliers (singleton clusters)
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Quality measures

Internal indices
The clustering is judged on the basis of certain intrinsic statistical properties
of the clustering itself.

Modularity, conductance, coverage

External indices
The clustering is compared to a user-given gold-standard clustering (using a
pairwise/mapping approach).

Normalised mutual information, adjusted mutual information, adjusted Rand
index, Fβ score, Fowlkes–Mallows index, Jaccard index, V-measure
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Quality measures / Internal indices

Modularity

Q = 1
2|E|

∑
u,v∈V

(
auv −

kukv

2|E|

)
δ(cu, cv)

Compares the presence of each intra-cluster edge with the probability of this
edge in a random graph

Coverage

γ =

∑
u,v∈V auvδ(cu, cv)∑

u,v∈V auv

A measure of intra-cluster density

27 / 56



Networks and
Algorithms

Barbara Ikica

Motivation
Outline

Network
algorithms
Data representation

Computational complexity

Examples
Centrality indices [PR]

Community detection
[mPW]

References
Software

Reading

Quality measures / Internal indices

Modularity

Q = 1
2|E|

∑
u,v∈V

(
auv −

kukv

2|E|

)
δ(cu, cv)

Compares the presence of each intra-cluster edge with the probability of this
edge in a random graph

Coverage

γ =

∑
u,v∈V auvδ(cu, cv)∑

u,v∈V auv

A measure of intra-cluster density

27 / 56



Networks and
Algorithms

Barbara Ikica

Motivation
Outline

Network
algorithms
Data representation

Computational complexity

Examples
Centrality indices [PR]

Community detection
[mPW]

References
Software

Reading

Quality measures / Internal indices

Conductance

φ = 1− 1
|C|

∑
Ci∈C

φ(Ci)

φ(Ci) =

∑
u∈Ci,v/∈Ci

auv

min
{∑

u∈Ci,v∈V
auv ,

∑
u/∈Ci,v∈V

auv

}
A measure of inter-cluster sparsity

28 / 56



Networks and
Algorithms

Barbara Ikica

Motivation
Outline

Network
algorithms
Data representation

Computational complexity

Examples
Centrality indices [PR]

Community detection
[mPW]

References
Software

Reading

Quality measures / External indices

Normalized mutual information

NMI(C,G) = MI(C,G)√
H(C)H(G)

MI(C,G) = H(C) + H(G)−H(C,G)

H(Ci) = −
∑
C∈Ci

|C|
|V |

log |C|
|V |

H(C,G) = −
∑

Ci∈C,Gj∈G

|Ci ∩Gj |
|V |

log
|Ci ∩Gj |
|V |

A measure of “information overlap” between C and G
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Quality measures / External indices

Adjusted mutual information

AMI = MI(C,G)− E[MI(C,G)]√
H(C)H(G)− E[MI(C,G)]

A measure of “information overlap” between C and G adjusted for chance
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Quality measures / External indices

Adjusted Rand index

ARI(C,G) = RI(C,G)− E[RI(C,G)]
max(RI(C,G))− E[RI(C,G)]

=

= 2(TP · TN − FP · FN)
(TN + FP )(FP + TP ) + (TN + FN)(FN + TP )

A measure of the level of agreement between C and G as the fraction of
agreeing pairs of vertices to all possible pairs of vertices
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Quality measures / External indices

Fβ score

Fβ = (1 + β2) · TP
(1 + β2) · TP + β2 · FN + FP

Weighted harmonic mean of precision and recall

Fowlkes–Mallows index

FM =

√
TP

TP + FP
·

TP

TP + FN

Geometric mean of precision and recall
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Quality measures / External indices

Jaccard index

Fβ = (1 + β2) · TP
(1 + β2) · TP + β2 · FN + FP

V-measure

Vβ = (1 + β) ho · cp
β · ho+ cp

Harmonic mean of homogeneity ho and completeness cp of the clustering
solution
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Experiments

Zachary (|V | = 34, |E| = 78)
Ties amongst the members of a university karate club by Wayne Zachary.
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Experiments / Zachary’s karate club

Method NMI ARI φ γ Q |C|

Edge bet. 0.517 0.392 0.424 0.692 0.401 5
Fastgreedy 0.576 0.568 0.574 0.756 0.381 3
Infomap 0.578 0.591 0.668 0.821 0.402 3
Label prop. 0.865 0.882 0.773 0.949 0.415 3
Leading eig. 0.612 0.435 0.487 0.667 0.393 4
Multilevel 0.516 0.392 0.558 0.731 0.419 4
Spinglass 0.627 0.509 0.563 0.756 0.420 4
Walktrap 0.531 0.321 0.434 0.590 0.353 5
mPW 1.000 1.000 0.773 0.949 0.403 2
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Experiments

UK faculty (|V | = 34, |E| = 78)
The personal friendship network of a faculty of a UK university; the school
affiliation of each individual is stored as a vertex attribute.
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Experiments / UK faculty

Method NMI ARI φ γ Q |C|

Edge bet. 0.796 0.825 0.513 0.827 0.413 4
Fastgreedy 0.849 0.820 0.553 0.775 0.444 4
Infomap 0.862 0.875 0.709 0.841 0.432 3
Label prop. 0.862 0.875 0.709 0.953 0.432 3
Leading eig. 0.863 0.871 0.488 0.768 0.397 4
Multilevel 0.802 0.796 0.573 0.749 0.449 4
Spinglass 0.872 0.842 0.573 0.749 0.449 4
Walktrap 0.862 0.875 0.709 0.841 0.432 3
mPW 0.911 0.918 0.741 0.953 0.432 3
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Experiments

American college football (|V | = 115, |E| = 613)
A network of regular season games between teams divided into 12 conferences.
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Experiments / American college football

Method NMI ARI φ γ Q |C|

Edge bet. 0.880 0.778 0.533 0.710 0.600 10
Fastgreedy 0.708 0.474 0.567 0.731 0.550 6
Multilevel 0.891 0.807 0.547 0.708 0.605 10
Leading eig. 0.703 0.464 0.456 0.641 0.493 8
Infomap 0.924 0.897 0.505 0.690 0.601 12
Label prop. 0.927 0.889 0.568 0.741 0.605 11
Spinglass 0.929 0.900 0.563 0.728 0.605 11
Walktrap 0.888 0.815 0.547 0.705 0.603 10
mPW 0.936 0.900 0.600 0.780 0.603 9
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Experiments

Political blogs (|V | = 1222, |E| = 16714)
Interactions between liberal and conservative blogs over the period of two
months preceding the U.S. Presidential Election of 2004.

Method NMI ARI φ γ Q |C|

Edge bet. – – – – – –
Fastgreedy 0.659 0.785 0.451 0.923 0.427 10
Infomap 0.523 0.651 0.250 0.899 0.423 41
Label prop. 0.723 0.813 0.857 1.000 0.426 3
Leading eig. 0.693 0.781 0.854 0.926 0.424 2
Multilevel 0.651 0.774 0.476 0.920 0.427 9
Spinglass 0.649 0.783 0.315 0.922 0.427 15
Walktrap 0.646 0.760 0.484 0.925 0.425 11
mPW 0.732 0.820 0.857 0.927 0.426 4
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Experiments

International E-road network (|V | = 1040, |E| = 1305)
An international system for numbering and designating roads stretching
throughout Europe and some parts of Central Asia.

Leaflet (http://leafletjs.com)
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Experiments / International E-road network

Method φ γ Q |C|

Edge bet. – – – –
Fastgreedy 0.860 0.917 0.861 24
Infomap 0.663 0.787 0.777 126
Label prop. 0.731 0.856 0.828 82
Leading eig. 0.794 0.887 0.835 26
Multilevel 0.873 0.921 0.867 24
Spinglass 0.866 0.924 0.872 25
Walktrap 0.757 0.886 0.828 67
mPW 0.945 0.979 0.845 17
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U.S. airports (|V | = 745, |E| = 4618)
A network of flights between U.S. airports.

44 / 56



Networks and
Algorithms

Barbara Ikica

Motivation
Outline

Network
algorithms
Data representation

Computational complexity

Examples
Centrality indices [PR]

Community detection
[mPW]

References
Software

Reading

Experiments / U.S. airports

Method φ γ Q |C|

Edge bet. 0.155 0.932 0.314 118
Fastgreedy 0.594 0.771 0.431 18
Infomap 0.477 0.913 0.310 49
Label prop. 0.653 0.959 0.258 20
Leading eig. 0.682 0.806 0.410 3
Multilevel 0.617 0.790 0.441 16
Spinglass 0.586 0.773 0.441 17
Walktrap 0.342 0.788 0.337 84
mPW 0.774 0.976 0.285 13
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Experiments / Normalised mutual information

Edge
betweenness

Fastgreedy Infomap Label
propagation

Leading
eigenvector

Multilevel Spinglass Walktrap mPW
0.0

0.2

0.4

0.6

0.8

1.0

NM
I

Zachary's karate club
Dolphins
UK faculty
Political books
American college football
Political blogs
Cora citation network
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Experiments / Adjusted mutual information
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Experiments / Adjusted Rand index
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propagation

Leading
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Experiments / Conductance

Edge
betweenness

Fastgreedy Infomap Label
propagation

Leading
eigenvector

Multilevel Spinglass Walktrap mPW
0.0
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Dolphins
UK faculty
Political books
American college football
Political blogs
Cora citation network
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LFR(|V | = 1000, γ = 2, β = 1, k_avg = 15, k_max = 100, c_min = 50, c_max = 100)
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LFR(|V | = 1000, γ = 3, β = 2, k_avg = 15, k_max = 50)
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LFR(|V | = 1000, γ = 2, β = 1, k_avg = 25, k_max = 150)
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Figure 13: ...

Method NMI AMI ARI φ γ Q F1 F2 FM JI V |C|
Edge betweenness 0.517 0.480 0.392 0.424 0.692 0.401 0.588 0.490 0.624 0.417 0.485 5
Fastgreedy 0.576 0.560 0.568 0.574 0.756 0.381 0.746 0.683 0.755 0.595 0.565 3
Infomap 0.578 0.561 0.591 0.668 0.821 0.402 0.764 0.712 0.770 0.619 0.568 3
Label propagation 0.837 0.833 0.882 0.773 0.949 0.416 0.939 0.940 0.939 0.886 0.837 3
Leading eigenvector 0.612 0.591 0.435 0.486 0.667 0.393 0.620 0.518 0.656 0.449 0.579 4
Multilevel 0.516 0.489 0.392 0.558 0.731 0.419 0.598 0.506 0.627 0.427 0.490 4
Spinglass 0.619 0.598 0.465 0.558 0.744 0.420 0.646 0.547 0.677 0.477 0.588 4
Walktrap 0.531 0.499 0.321 0.434 0.590 0.353 0.509 0.405 0.563 0.342 0.490 5
mPW 1.000 1.000 1.000 0.773 0.949 0.402 1.000 1.000 1.000 1.000 1.000 2

Table 2: Zachary’s karate club
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Computer resources

Network analysis and visualisation software
• Pajek (free; large network analysis): http://vlado.fmf.uni-lj.si/pub/networks/pajek/

• Gephi (free; (dynamic) network visualisation): https://gephi.org/

• igraph (free; R/Python/Mathematica/C/C++ network analysis package): https://igraph.org/

• NetworkX (free; Python package for complex networks): https://networkx.github.io/

• SNAP (free; Python/C++ high performance library for large networks):
http://snap.stanford.edu/

• Mathematica (commercial):
https://reference.wolfram.com/language/guide/GraphsAndNetworks.html

• MATLAB (commercial):
https://mathworks.com/help/matlab/graph-and-network-algorithms.html

Network datasets
• Newman: http://www-personal.umich.edu/~mejn/netdata/

• Koblenz Network Collection: http://konect.uni-koblenz.de/networks/

• SuiteSparse Matrix Collection: https://sparse.tamu.edu/

• Network Repository: http://networkrepository.com/

• (BIO)SNAP: http://snap.stanford.edu/data/index.html
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Reading

• Newman, M. E. J. Networks: An Introduction (Oxford University Press,
New York, NY, 2010).

• Brandes, U. & Erlebach, T. Network Analysis: Methodological
Foundations (Springer, Berlin, Heidelberg, 2005).

• Ikica, B. Clustering via the Modified Petford–Welsh Algorithm. To appear
in Ars Mathematica Contemporanea (AMC).

• Ikica, B., Povh, J. & Žerovnik, J. Clustering as a Dual Problem to
Colouring. Submitted.
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