

Barbara Ikica

Supervisor: prof. dr. Milan Hladnik Faculty of Mathematics and Physics, University of Ljubljana

18 June 2015

Barbara Ikica

Barbara Ikica

Barbara Ikica

Barbara Ikica

Overview

Overview

• Deterministic models:

• the replicator equation,

Overview

- the replicator equation,
- Nash equilibria and evolutionary stability,

Overview

- the replicator equation,
- · Nash equilibria and evolutionary stability,
- permanence and persistence.

Overview

- the replicator equation,
- · Nash equilibria and evolutionary stability,
- permanence and persistence.
- Stochastic models:

Overview

• Deterministic models:

- the replicator equation,
- · Nash equilibria and evolutionary stability,
- permanence and persistence.

Stochastic models:

evolutionary graph theory:

Overview

• Deterministic models:

- the replicator equation,
- · Nash equilibria and evolutionary stability,
- permanence and persistence.

Stochastic models:

- evolutionary graph theory:
 - amplifiers of random drift,

Overview

• Deterministic models:

- the replicator equation,
- · Nash equilibria and evolutionary stability,
- permanence and persistence.

Stochastic models:

- evolutionary graph theory:
 - amplifiers of random drift,
 - amplifiers of selection,

Overview

• Deterministic models:

- the replicator equation,
- · Nash equilibria and evolutionary stability,
- permanence and persistence.

Stochastic models:

- evolutionary graph theory:
 - amplifiers of random drift,
 - amplifiers of selection,
 - the replicator equation on graphs.

Deterministic models

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

State of the population (with n species):

$$\Delta_n := \left\{ \boldsymbol{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n : x_i \ge 0 \text{ in } \sum_{i=1}^n x_i = 1 \right\}$$

Fitness (reproductive success) of the *i*-th species: $f_i(\boldsymbol{x})$

Replicator dynamics

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

The replicator equation

$$\dot{x}_i = x_i(f_i(\boldsymbol{x}) - \bar{f}(\boldsymbol{x})), \quad i = 1, 2, \dots, n$$

Replicator dynamics

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

The replicator-mutator equation

$$\dot{x}_{i} = x_{i} \left(f_{i}(\boldsymbol{x}) - f_{i}(\boldsymbol{x}) \sum_{\substack{j=1, \ j\neq i}}^{n} q_{ij} \right) + \sum_{\substack{j=1, \ j\neq i}}^{n} x_{j} f_{j}(\boldsymbol{x}) q_{ji} - x_{i} \bar{f}(\boldsymbol{x}), \quad i = 1, 2, \dots, n$$

Replicator dynamics

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

The replicator equation

$$\dot{x}_i = x_i(f_i(\boldsymbol{x}) - \bar{f}(\boldsymbol{x})), \quad i = 1, 2, \dots, n$$

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Game theory in replicator dynamics

Strategies:

$$\Delta_N := \left\{ \boldsymbol{p} = (p_1, p_2, \dots, p_N) \in \mathbb{R}^N : p_i \ge 0 \text{ in } \sum_{i=1}^N p_i = 1 \right\}$$

Payoff matrix: $U = [u_{ij}]_{i,j=1}^N$

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

r ermanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Game theory in replicator dynamics

Strategies:

$$\Delta_N := \left\{ \boldsymbol{p} = (p_1, p_2, \dots, p_N) \in \mathbb{R}^N : p_i \ge 0 \text{ in } \sum_{i=1}^N p_i = 1 \right\}$$

Payoff matrix: $U = [u_{ij}]_{i,j=1}^N$

Expected payoff of a *p*-strategist against a *q*-strategist: $p \cdot Uq$

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Game theory in replicator dynamics

How to incorporate a game?

1. *i*-th species $(x_i) \longrightarrow p^i$

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Game theory in replicator dynamics

How to incorporate a game?

1. *i*-th species
$$(x_i)$$
 \longrightarrow p^i
2. $A = [a_{ij}]_{i,i=1}^n, a_{ij} = p^i \cdot Up^j$

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Game theory in replicator dynamics

How to incorporate a game?

1. *i*-th species
$$(x_i)$$
 \longrightarrow p^i
2. $A = [a_{ij}]_{i,j=1}^n, a_{ij} = p^i \cdot Up^j$
3. $f_i(\mathbf{x}) = (A\mathbf{x})_i = \sum_{j=1}^n p^i \cdot Up^j x_j$

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Game theory in replicator dynamics

How to incorporate a game?

1. *i*-th species
$$(x_i)$$
 \longrightarrow p^i
2. $A = [a_{ij}]_{i,j=1}^n, a_{ij} = p^i \cdot Up^j$
3. $f_i(\mathbf{x}) = (A\mathbf{x})_i = \sum_{j=1}^n p^i \cdot Up^j x_j$

The replicator equation

$$\dot{x}_i = x_i \left(f_i(\boldsymbol{x}) - \bar{f}(\boldsymbol{x}) \right), \quad i = 1, 2, \dots, n$$

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Game theory in replicator dynamics

How to incorporate a game?

1. *i*-th species
$$(x_i)$$
 \longrightarrow p^i
2. $A = [a_{ij}]_{i,j=1}^n, a_{ij} = p^i \cdot Up^j$
3. $f_i(\mathbf{x}) = (A\mathbf{x})_i = \sum_{j=1}^n p^i \cdot Up^j x_j$

The linear replicator equation

$$\dot{x}_i = x_i((A\boldsymbol{x})_i - \boldsymbol{x} \cdot A\boldsymbol{x}), \quad i = 1, 2, \dots, n$$

Average fitness: $\bar{f}(\boldsymbol{x}) = \boldsymbol{x} \cdot A\boldsymbol{x}$

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

A

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Nash equilibria and evolutionary stability

(Symmetric) Nash equilibrium

A strategy
$$oldsymbol{\hat{p}}\in\Delta_N$$
 such that for all $oldsymbol{p}\in\Delta_N$,

$$\boldsymbol{\hat{p}} \cdot U\boldsymbol{\hat{p}} \geq \boldsymbol{p} \cdot U\boldsymbol{\hat{p}}$$
 .

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

1

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Nash equilibria and evolutionary stability

(Symmetric) Nash equilibrium

A strategy
$$oldsymbol{\hat{p}}\in\Delta_N$$
 such that for all $oldsymbol{p}\in\Delta_N$,

$$\boldsymbol{\hat{p}} \cdot U\boldsymbol{\hat{p}} \geq \boldsymbol{p} \cdot U\boldsymbol{\hat{p}}$$
.

Evolutionary stable strategy

A strategy $\hat{\boldsymbol{p}} \in \Delta_N$ such that for all $\boldsymbol{p} \in \Delta_N \setminus \{ \hat{\boldsymbol{p}} \}$,

$$\hat{\boldsymbol{p}} \cdot U(\varepsilon \boldsymbol{p} + (1 - \varepsilon) \hat{\boldsymbol{p}}) > \boldsymbol{p} \cdot U(\varepsilon \boldsymbol{p} + (1 - \varepsilon) \hat{\boldsymbol{p}})$$

holds for all sufficiently small $\varepsilon > 0$.

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Nash equilibria and evolutionary stability

Theorem

A strategy \hat{p} is an ESS iff (for $0 < \varepsilon < \overline{\varepsilon}$) the following two conditions are satisfied:

- equilibrium condition: $\hat{\boldsymbol{p}} \cdot U\hat{\boldsymbol{p}} \ge \boldsymbol{p} \cdot U\hat{\boldsymbol{p}}$ for all $\boldsymbol{p} \in \Delta_N$,
- stability condition: if $p \neq \hat{p}$ and $p \cdot U\hat{p} = \hat{p} \cdot U\hat{p}$, then $\hat{p} \cdot Up > p \cdot Up$.

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

1

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Nash equilibria and evolutionary stability

(Symmetric) Nash equilibrium

A strategy
$$oldsymbol{\hat{p}}\in\Delta_N$$
 such that for all $oldsymbol{p}\in\Delta_N$,

$$\boldsymbol{\hat{p}} \cdot U\boldsymbol{\hat{p}} \geq \boldsymbol{p} \cdot U\boldsymbol{\hat{p}}$$
.

Evolutionary stable strategy

A strategy $\hat{\boldsymbol{p}} \in \Delta_N$ such that for all $\boldsymbol{p} \in \Delta_N \setminus \{ \hat{\boldsymbol{p}} \}$,

$$\hat{\boldsymbol{p}} \cdot U(\varepsilon \boldsymbol{p} + (1 - \varepsilon) \hat{\boldsymbol{p}}) > \boldsymbol{p} \cdot U(\varepsilon \boldsymbol{p} + (1 - \varepsilon) \hat{\boldsymbol{p}})$$

holds for all sufficiently small $\varepsilon > 0$.

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Nash equilibria and evolutionary stability

(Symmetric) Nash equilibrium

A state of the population $\boldsymbol{\hat{x}} \in \Delta_n$ such that for all $\boldsymbol{x} \in \Delta_n$,

$$\hat{\boldsymbol{x}} \cdot A \hat{\boldsymbol{x}} \geq \boldsymbol{x} \cdot A \hat{\boldsymbol{x}}$$

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Nash equilibria and evolutionary stability

(Symmetric) Nash equilibrium

A state of the population $\boldsymbol{\hat{x}} \in \Delta_n$ such that for all $\boldsymbol{x} \in \Delta_n$,

$$\hat{\boldsymbol{x}} \cdot A \hat{\boldsymbol{x}} \ge \boldsymbol{x} \cdot A \hat{\boldsymbol{x}}$$

Evolutionary stable state

A state of the population $\hat{x} \in \Delta_n$ such that for all $x \neq \hat{x}$ in a neighbourhood of \hat{x} in Δ_n ,

$$\hat{\boldsymbol{x}} \cdot A\boldsymbol{x} > \boldsymbol{x} \cdot A\boldsymbol{x}$$
.

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Equilibria of the linear replicator equation

Strict Nash Stable equilibria equilibria Cholutionary stable state Asymptotically stable equilibria \mathcal{L} limit sets of orbits in int Δn Nash equilibria

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

T

D

Η

The Hawk–Dove Game

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Barbara Ikica

Deterministic models

The replicator equation Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

The Rock–Scissors–Paper Game

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Permanence and persistence

Permanence

A dynamical system on Δ_n is permanent if there exists a $\delta > 0$ such that $x_i = x_i(0) > 0$ for $i = 1, 2, \dots, n$ implies

$$\liminf_{t \to +\infty} x_i(t) > \delta$$

for
$$i = 1, 2, ..., n$$

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Permanence and persistence

Persistence

A dynamical system on Δ_n is persistent if $x_i = x_i(0) > 0$ for i = 1, 2, ..., n implies

$$\limsup_{t \to +\infty} x_i(t) > 0$$

for
$$i = 1, 2, ..., n$$

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Permanence and persistence

Strong persistence

A dynamical system on Δ_n is strongly persistent if $x_i = x_i(0) > 0$ for $i = 1, 2, \dots, n$ implies

$$\liminf_{t \to +\infty} x_i(t) > 0$$

for
$$i = 1, 2, ..., n$$

Index theory

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Saturation

An equilibrium p of the replicator equation

$$\dot{x}_i = x_i (f_i(\boldsymbol{x}) - \bar{f}(\boldsymbol{x})), \quad i = 1, 2, \dots, n,$$

is saturated if $f_i(\mathbf{p}) \leq \overline{f}(\mathbf{p})$ holds for all i with $p_i = 0$.

Index theory

Saturation

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

An equilibrium p of the replicator equation

$$\dot{x}_i = x_i (f_i(\boldsymbol{x}) - \bar{f}(\boldsymbol{x})), \quad i = 1, 2, \dots, n,$$

is saturated if $f_i(\mathbf{p}) \leq \overline{f}(\mathbf{p})$ holds for all i with $p_i = 0$.

General index theorem for the replicator equation

There exists at least one saturated equilibrium for the replicator equation. If all saturated equilibria \boldsymbol{p} are regular, i.e. det $J\hat{\boldsymbol{f}}(\boldsymbol{p}) \neq 0$, the sum of their Poincaré indices $\sum_{\boldsymbol{p}} i(\boldsymbol{p})$ is $(-1)^{n-1}$, and hence their number is odd.

Index theory

Saturation

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

An equilibrium p of the linear replicator equation

$$\dot{x}_i = x_i ((A\boldsymbol{x})_i - \boldsymbol{x} \cdot A\boldsymbol{x}), \quad i = 1, 2, \dots, n,$$

is saturated if $(A\mathbf{p})_i \leq \mathbf{p} \cdot A\mathbf{p}$ holds for all *i* with $p_i = 0$.

General index theorem for the replicator equation

There exists at least one saturated equilibrium for the replicator equation. If all saturated equilibria p are regular, i.e. det $J\hat{f}(p) \neq 0$, the sum of their Poincaré indices $\sum_{p} i(p)$ is $(-1)^{n-1}$, and hence their number is odd.

hs IIIUEX

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Index theory

Saturation

An equilibrium p of the linear replicator equation

$$\dot{x}_i = x_i((A\boldsymbol{x})_i - \boldsymbol{x} \cdot A\boldsymbol{x}), \quad i = 1, 2, \dots, n,$$

is saturated if $(A\mathbf{p})_i \leq \mathbf{p} \cdot A\mathbf{p}$ holds for all *i* with $p_i = 0$.

(Symmetric) Nash equilibrium

A state of the population $oldsymbol{p}\in\Delta_n$ such that for all $oldsymbol{x}\in\Delta_n$,

$$\boldsymbol{x} \cdot A \boldsymbol{p} \leq \boldsymbol{p} \cdot A \boldsymbol{p}$$
.

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory

Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Evolutionary graph theory

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory

Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Evolutionary graph theory

Fixation probability ρ_G

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory

Fixation probability ρ_G

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory

Fixation probability ρ_G

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory

Fixation probability ρ_G

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory

Fixation probability ρ_G

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory

Fixation probability ρ_G

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory

Fixation probability ρ_G

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory

Fixation probability ρ_G

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory

Fixation probability ρ_G

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory

Fixation probability ρ_G

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory

Evolutionary Dynamics, Games and Graphs Barbara Ikica

Fixation probability ho_G

Deterministic

models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory

Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

The Moran process in a homogeneous population

Consider a complete graph with N vertices and identical edge weights. The corresponding fixation probability of a single mutant with relative fitness $r \neq 1$ (in a population of residents with fitness 1) is given by

$$\rho_M := \frac{1-1/r}{1-1/r^N}$$

If
$$r=1$$
, $\rho_M=1/N$

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory

Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Fixation probability ρ_G

Classification of graphs according to ρ_G

1. If $\rho_G = \rho_M$, then the graph G is ρ -equivalent to the Moran process; it has he same balance of selection and random drift.

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory

Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Fixation probability ρ_G

Classification of graphs according to ρ_G

- 1. If $\rho_G = \rho_M$, then the graph G is ρ -equivalent to the Moran process; it has he same balance of selection and random drift.
- 2. A graph G is an *amplifier of selection* if

$$\left|
ho_G >
ho_M$$
 for $r > 1
ight|$ and $\left|
ho_G <
ho_M$ for $r < 1
ight|$

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory

Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

Fixation probability ρ_G

Classification of graphs according to ρ_G

- 1. If $\rho_G = \rho_M$, then the graph G is ρ -equivalent to the Moran process; it has he same balance of selection and random drift.
- 2. A graph G is an *amplifier of selection* if

$$\left|
ho_G >
ho_M$$
 for $r > 1
ight|$ and $\left|
ho_G <
ho_M$ for $r < 1
ight|$

3. A graph G is an *amplifier of random drift* if

$$\rho_G < \rho_M$$
 for $r > 1$ and $\rho_G > \rho_M$ for $r < 1$.

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory

Amplifiers of random drift Amplifiers of selection The replicator equation on graphs

ρ -equivalence to the Moran process

The isothermal theorem

A graph G is $\rho\text{-equivalent}$ to the Moran process if and only if it is isothermal.

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on

Amplifiers of random drift

Construction of amplifiers of random drift

Suppose $1/N \approx 0$. Choose a fitness r > 1 and a constant $\rho \in (1/N, \rho_M)$ or, alternatively, a fitness r < 1 and a constant $\rho \in (\rho_M, 1/N)$. There exists a graph G on N vertices such that $\rho_G = \rho$.

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection The replicator equation on

Amplifiers of random drift

Construction of amplifiers of random drift

Suppose $1/N \approx 0$. Choose a fitness r > 1 and a constant $\rho \in (1/N, \rho_M)$ or, alternatively, a fitness r < 1 and a constant $\rho \in (\rho_M, 1/N)$. There exists a graph G on N vertices such that $\rho_G = \rho$.

Amplifiers of selection

Barbara Ikica

Deterministic models

The replicator equation

Stochastic models

Evolutionary graph theory

Amplifiers of selection

The replicator equation on

Theorem

Let $G_{(L,C,D)}$ be a superstar with D > 2. In the limit as L and C tend to infinity, for r > 1,

$$1 - \frac{1}{r^4 (D-1)(1-1/r)^2} \le \rho \le 1 - \frac{1}{1+r^4 D}$$

and for 0 < r < 1.

$$\rho \le \left((1/r)^4 T \right)^{-\delta + 1}$$

Here, T and $\delta > 1$ are appropriately chosen natural numbers with T satisfying $(D-1)(1-r)^2 < T < D$.

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift

Amplifiers of selection

The replicator equation on graphs

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection

The replicator equation on graphs

Evolutionary game theory on graphs

Strategies: R_1, R_2, \ldots, R_n ; payoff matrix: $A = [a_{ij}]_{i,j=1}^n$

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection

The replicator equation on graphs

Evolutionary game theory on graphs

Strategies: R_1, R_2, \ldots, R_n ; **payoff matrix**: $A = [a_{ij}]_{i,j=1}^n$ **Graphs**: N vertices, undirected and unweighted edges, k-regular

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection

The replicator equation on graphs

Evolutionary game theory on graphs

Strategies: R_1, R_2, \ldots, R_n ; **payoff matrix**: $A = [a_{ij}]_{i,j=1}^n$ **Graphs**: N vertices, undirected and unweighted edges, k-regular

Ri

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection

The replicator equation on graphs

Evolutionary game theory on graphs

Strategies: R_1, R_2, \ldots, R_n ; **payoff matrix**: $A = [a_{ij}]_{i,j=1}^n$ **Graphs**: N vertices, undirected and unweighted edges, k-regular

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection

The replicator equation on graphs

Evolutionary game theory on graphs

Strategies: R_1, R_2, \ldots, R_n ; **payoff matrix**: $A = [a_{ij}]_{i,j=1}^n$ **Graphs**: N vertices, undirected and unweighted edges, k-regular

Payoff of a R_i -strategist with k_j neighbouring R_j -strategists:

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection

The replicator equation on graphs

Evolutionary game theory on graphs

Strategies: R_1, R_2, \ldots, R_n ; **payoff matrix**: $A = [a_{ij}]_{i,j=1}^n$ **Graphs**: N vertices, undirected and unweighted edges, k-regular

Payoff of a R_i -strategist with k_j neighbouring R_j -strategists:

Fitness of a R_i -strategist: $f_i = 1 - w + wF_i$, $w \in [0, 1]$ intensity of selection

Barbara Ikica

Deterministic models

The replicator equation

Nash equilibria and evolutionary stability

Permanence and persistence

Stochastic models

Evolutionary graph theory Amplifiers of random drift Amplifiers of selection

The replicator equation on graphs

Evolutionary game theory on graphs

Let $x_i(t)$ denote the expected frequency of R_i -strategists at time $t \ge 0$.

The replicator equation on graphs

Suppose k > 2 and $N \gg 1$. In the limit of weak selection, $w \rightarrow 0$, the following equation can be derived to describe evolutionary game dynamics on graphs.

$$\dot{x}_i = x_i \Big(((A+B)\boldsymbol{x})_i - \boldsymbol{x} \cdot (A+B)\boldsymbol{x} \Big), \quad i = 1, 2, \dots, n \Big|$$

Here, the elements of the matrix $B = [b_{ij}]_{i,j=1}^n$ are given by

$$b_{ij} = rac{a_{ii} + a_{ij} - a_{ji} - a_{jj}}{k - 2}$$