

Darko Dimitrov, B. I., Riste Škrekovski. Maximum external Wiener index of graphs. *Discrete Appl. Math.* **257**, 331–337 (2019).

Barbara Ikica

Overview

Overview

Barbara Ikica

• Introduction:

• the Wiener index,

Overview

- $\circ\;$ the Wiener index,
- $\circ\;$ the internal & the external Wiener index,

Overview

- $\circ\;$ the Wiener index,
- the internal & the external Wiener index,
- \circ motivation.

Overview

- the Wiener index,
- the internal & the external Wiener index,
- motivation.
- An overview of our results:

Overview

• Introduction:

- $\circ~$ the Wiener index,
- the internal & the external Wiener index,
- motivation.

• An overview of our results:

auxiliary definitions,

Overview

• Introduction:

- the Wiener index,
- the internal & the external Wiener index,
- motivation.

• An overview of our results:

- auxiliary definitions,
- proof of the main theorem,

Overview

• Introduction:

- the Wiener index,
- the internal & the external Wiener index,
- motivation.

• An overview of our results:

- auxiliary definitions,
- proof of the main theorem,
- open problems.

Overview

• Introduction:

- the Wiener index,
- the internal & the external Wiener index,
- motivation.

• An overview of our results:

- auxiliary definitions,
- proof of the main theorem,
- open problems.
- References

The Wiener index

Barbara Ikica

Introduction

The Wiener index

The internal & the external Wiener index Motivation

An overview of our results

Main theorem

Auxiliary definitions

Proof of the main theorem

Open problems

References

$$\mathcal{W}(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v)$$

The Wiener index

Barbara Ikica

Introduction

The Wiener index

The internal & the external Wiener index Motivation

An overview of our results

Main theorem

Auxiliary definitions

Proof of the main theorem

Open problems

References

Definition

$$\mathcal{W}(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v)$$

• [Wiener, 1947]

The Wiener index

Barbara Ikica

Introduction

The Wiener index

The internal & the external Wiener index Motivation

An overview of our results

- Main theorem
- Auxiliary definitions
- Proof of the main theorem
- Open problems

References

$$\mathcal{W}(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v)$$

- [Wiener, 1947]
- correlation with paraffin boiling points

The Wiener index

Barbara Ikica

Introduction

The Wiener index

The internal & the external Wiener index Motivation

An overview of our results

- Main theorem
- Auxiliary definitions
- Proof of the main theorem
- Open problems

References

$$\mathcal{W}(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v)$$

- [Wiener, 1947]
- correlation with paraffin boiling points
- quantitative structure-activity relationships (QSAR) and quantitative property-activity relationships (QPAR) modelling

The Wiener index

Barbara Ikica

Introduction

The Wiener index

The internal & the external Wiener index Motivation

An overview of our results

- Main theorem
- Auxiliary definitions
- Proof of the main theorem
- Open problems

References

$$W(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v)$$

- [Wiener, 1947]
- correlation with paraffin boiling points
- quantitative structure-activity relationships (QSAR) and quantitative property-activity relationships (QPAR) modelling

Barbara Ikica

Introduction

The Wiener index

The internal & the external Wiener index

Motivation

An overview of our results

Main theorem

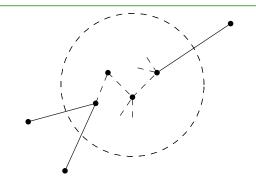
Auxiliary definitions

Proof of the main theorem

Open problems

References

The internal & the external Wiener index



$$W(G) = \sum_{\substack{u,v \in V(G) \\ \min\{d(u),d(v)\} \ge 2}} d(u,v) + \sum_{\substack{u,v \in V(G) \\ \min\{d(u),d(v)\} = 1}} d(u,v)$$

Barbara Ikica

Introduction

The Wiener index

The internal & the external Wiener index

Motivation

An overview of our results

Main theorem

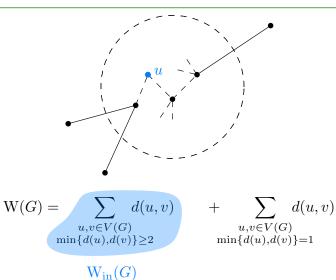
Auxiliary definitions

Proof of the main theorem

Open problems

References

The internal & the external Wiener index



4 / 13

Barbara Ikica

Introduction

The Wiener index

The internal & the external Wiener index

Motivation

An overview of our results

Main theorem

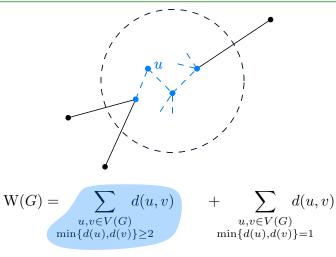
Auxiliary definitions

Proof of the main theorem

Open problems

References

The internal & the external Wiener index



 $W_{in}(G)$

Barbara Ikica

Introduction

The Wiener index

The internal & the external Wiener index

Motivation

An overview of our results

Main theorem

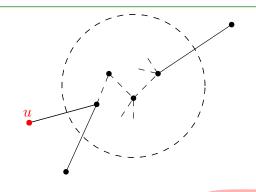
Auxiliary definitions

Proof of the main theorem

Open problems

References

The internal & the external Wiener index



$$\mathbf{W}(G) = \sum_{\substack{u,v \in V(G) \\ \min\{d(u),d(v)\} \ge 2}} d(u,v)$$

$$+ \sum_{\substack{u,v \in V(G)\\\min\{d(u),d(v)\}=1}} d(u,v)$$

 $W_{ex}(G)$

Barbara Ikica

Introduction

The Wiener index

The internal & the external Wiener index

Motivation

An overview of our results

Main theorem

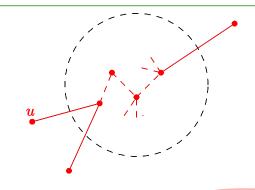
Auxiliary definitions

Proof of the main theorem

Open problems

References

The internal & the external Wiener index



$$\mathbf{W}(G) = \sum_{\substack{u,v \in V(G) \\ \min\{d(u),d(v)\} \ge 2}} d(u,v)$$

$$+ \sum_{\substack{u,v \in V(G)\\\min\{d(u),d(v)\}=1}} d(u,v)$$

 $W_{ex}(G)$

Motivation

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index

Motivation

An overview of our results

Main theorem

Auxiliary definitions

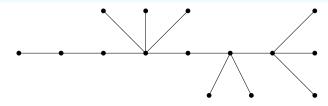
Proof of the main theorem

Open problems

References

Definition

A **caterpillar** is a tree with a central path in which vertices located outside this path are directly connected to it by an edge.



Motivation

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index

Motivation

An overview of our results

Main theorem

Auxiliary definitions

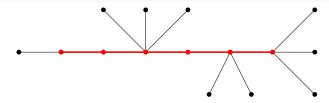
Proof of the main theorem

Open problems

References

Definition

A **caterpillar** is a tree with a **central path** in which vertices located outside this path are directly connected to it by an edge.



Motivation

Definition

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index

Motivation

An overview of our results

Main theorem

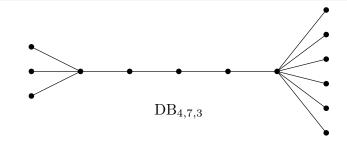
Auxiliary definitions

Proof of the main theorem

Open problems

References

A double broom $DB_{a,b,c}$ is a caterpillar obtained from P_{c+2} by attaching a - 1 pendant vertices to one of its endpoints and b - 1 pendant vertices to its other endpoint. A double broom is **balanced** if $|a - b| \leq 1$.



Motivation

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index

Motivation

An overview of our results

Main theorem

Auxiliary definitions

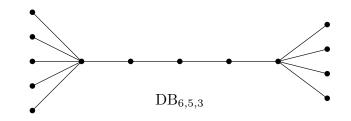
Proof of the main theorem

Open problems

References

Definition

A double broom $DB_{a,b,c}$ is a caterpillar obtained from P_{c+2} by attaching a-1 pendant vertices to one of its endpoints and b-1 pendant vertices to its other endpoint. A double broom is balanced if $|a-b| \leq 1$.



Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index

Motivation

An overview of our results

Main theorem

Auxiliary definitions

Proof of the main theorem

Open problems

References

Motivation

Conjecture [Gutman et al., 2016]

Among all trees of a fixed order, double brooms have the greatest $W_{e {\boldsymbol{\mathrm{x}}}}.$

Motivation

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index

Motivation

An overview of our results

Main theorem

Auxiliary definitions

Proof of the main theorer

Open problems

References

Conjecture [Gutman et al., 2016]

Among all trees of a fixed order, double brooms have the greatest $\ensuremath{W_{ex}}\xspace.$

The double broom that attains the maximal W_{ex} is the balanced double broom $DB_{a.b.c.}$

Motivation

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index

Motivation

An overview of our results

Main theorem

Auxiliary definitions Proof of the main theor

Open problems

References

Conjecture [Gutman et al., 2016]

Among all trees of a fixed order, double brooms have the greatest $\ensuremath{W_{\mathrm{ex}}}\xspace.$

The double broom that attains the maximal W_{ex} is the balanced double broom $\mathrm{DB}_{a,b,c}.$

Theorem [main result]

Outline of the proof

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index

Motivation

An overview of our results

Main theorem

Auxiliary definitions Proof of the main theorem Open problems

References

Theorem

Outline of the proof

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index Motivation

An overview of our

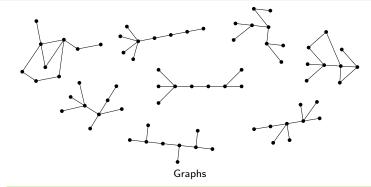
results

Main theorem

Auxiliary definitions Proof of the main theorem Open problems

References

Theorem



Outline of the proof

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index

Motivation

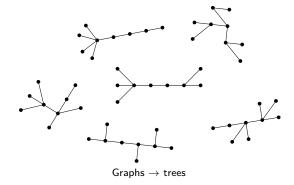
An overview of our results

Main theorem

Auxiliary definitions Proof of the main theorem Open problems

References

Theorem



Outline of the proof

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index

Motivation

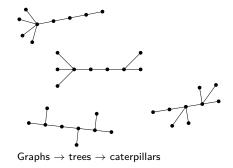
An overview of our results

Main theorem

Auxiliary definitions Proof of the main theorem Open problems

References

Theorem



Outline of the proof

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index

Motivation

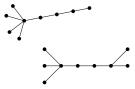
An overview of our results

Main theorem

Auxiliary definitions Proof of the main theorem Open problems

References

Theorem



Outline of the proof

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index

Motivation

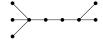
An overview of our results

Main theorem

Auxiliary definitions Proof of the main theorem Open problems

References

Theorem



$$\mathsf{Graphs} o \mathsf{trees} o \mathsf{caterpillars} o \mathrm{DB}_{a,b,c} o \mathsf{balanced} \ \mathrm{DB}_{a,b,c}$$

hs / (u/(III)

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index Motivation

Wouvation

An overview of our results

Main theorem

Auxiliary definitions

Proof of the main theorem Open problems

References

Auxiliary definitions

Definition

A vertex is a **branching point** if at least three of its neighbours are non-leaf vertices.

Auxiliary definitions

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index Motivation

An overview of our results

Main theorem

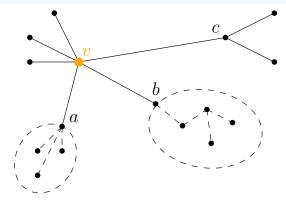
Auxiliary definitions

Proof of the main theorem Open problems

References

Definition

A vertex is a **branching point** if at least three of its neighbours are non-leaf vertices.



Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index

Motivation

An overview of our results

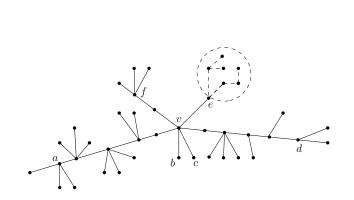
Main theorem

Auxiliary definitions

Proof of the main theorem Open problems

References

Auxiliary definitions



Auxiliary definitions

Definition

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index

Motivation

An overview of our results

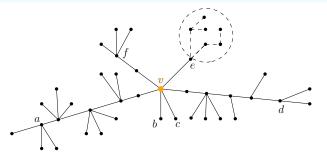
Main theorem

Auxiliary definitions

Proof of the main theorem Open problems

References

A branching point v is **peripheral** if all connected components of G - v, except at most one, are caterpillars with an endpoint adjacent to v.



Auxiliary definitions

Definition

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index

Motivation

An overview of our results

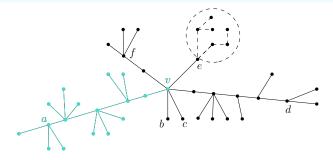
Main theorem

Auxiliary definitions

Proof of the main theorem Open problems

References

A (peripheral) branching point together with such a caterpillar component is called a **brush**.



Auxiliary definitions

Definition

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index

Motivation

An overview of our results

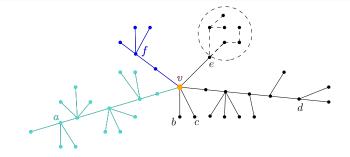
Main theorem

Auxiliary definitions

Proof of the main theorem Open problems

References

Two brushes are **adjacent** if they share the same attachment point.



Auxiliary definitions

Definition

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index

Motivation

An overview of our results

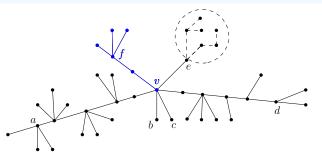
Main theorem

Auxiliary definitions

Proof of the main theorem Open problems

References

A **broom** is a brush in which every vertex of the central path, except for the attachment point and (possibly) the other endpoint of this path, has degree two.



Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index

Motivation

An overview of our results

Main theorem

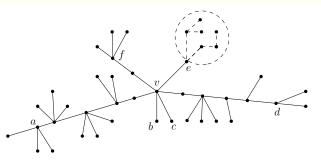
Auxiliary definitions

References

Auxiliary definitions

Observation

Every pair of brushes either has disjoint vertex sets or shares precisely one vertex, the attaching vertex. Additionally, $d_B(v) = 1$ holds for every brush B and its attaching vertex v.



Auxiliary definitions

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index

Motivation

An overview of our results

Main theorem

Auxiliary definitions

Proof of the main theorem Open problems

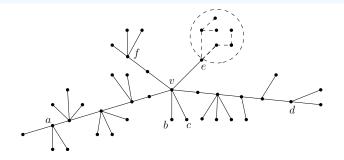
References

Definition

The internal degree $d_i(v)$ of v is the number of its non-leaf neighbours. The branching sum of $G\!:$

$$BS(G) = \sum_{v \text{ is a branching}} d_i(v).$$

point in G



Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index Motivation

An overview of our results

Main theorem

Auxiliary definitions

Proof of the main theorem

Open problems

References

Key steps

Theorem [main result]

The graphs on n vertices with the maximum W_{ex} are balanced double brooms $DB_{a,b,c}$ with suitably chosen a, b and c, n = a + b + c.

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index Motivation

An overview of our results

Main theorem

Auxiliary definitions

Proof of the main theorem

Open problems

References

Key steps

Theorem [main result]

The graphs on n vertices with the maximum W_{ex} are balanced double brooms $DB_{a,b,c}$ with suitably chosen a, b and c, n = a + b + c.

Claim 1

The maximum W_ex is attained by a tree.

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index Motivation

An overview of our results

Main theorem

Auxiliary definitions

Proof of the main theorem

Open problems

References

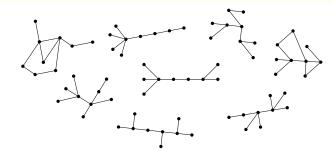
Key steps

Theorem [main result]

The graphs on n vertices with the maximum W_{ex} are balanced double brooms $DB_{a,b,c}$ with suitably chosen a, b and c, n = a + b + c.

Claim 1

The maximum W_{ex} is attained by a tree.



Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index Motivation

An overview of our results

Main theorem

Auxiliary definitions

Proof of the main theorem

Open problems

References

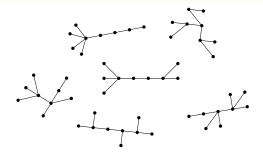
Key steps

Theorem [main result]

The graphs on n vertices with the maximum W_{ex} are balanced double brooms $DB_{a,b,c}$ with suitably chosen a, b and c, n = a + b + c.

Claim 1

The maximum W_{ex} is attained by a tree.



Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index Motivation

An overview of our results

Main theorem

Auxiliary definitions

Proof of the main theorem

Open problems

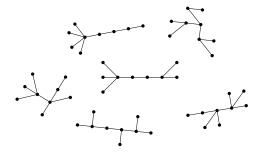
References

Key steps

Assume BS(G) > 0.

Claim 2

Let ${\cal B}$ be a brush of the extremal graph. Then there exist two other non-trivial brushes that are adjacent to each other.



Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index Motivation

An overview of our results

Main theorem

Auxiliary definition:

Proof of the main theorem

Open problems

References

Key steps

Claim 3

All brushes of the extremal graph except for at most one are brooms.

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index Motivation

An overview of our results

Main theorem

Auxiliary definitions

Proof of the main theorem

Open problems

References

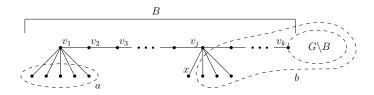
Key steps

Claim 3

All brushes of the extremal graph except for at most one are brooms.

Lemma

Let B be a non-trivial brush. If b>a, moving a pendant vertex x from v_j to v_1 strictly increases $W_{\rm ex}$. If b< a, this move strictly decreases $W_{\rm ex}$, and if b = a, $W_{\rm ex}$ remains the same.



Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index Motivation

An overview of our results

Main theorem

Auxiliary definitions

Proof of the main theorem

Open problems

References

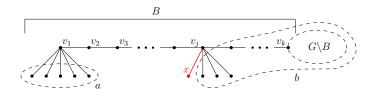
Key steps

Claim 3

All brushes of the extremal graph except for at most one are brooms.

Lemma

Let B be a non-trivial brush. If b>a, moving a pendant vertex x from v_j to v_1 strictly increases $W_{\rm ex}$. If b< a, this move strictly decreases $W_{\rm ex}$, and if b = a, $W_{\rm ex}$ remains the same.



Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index Motivation

An overview of our results

Main theorem

Auxiliary definitions

Proof of the main theorem

Open problems

References

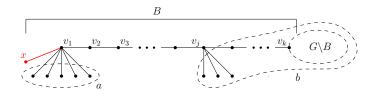
Key steps

Claim 3

All brushes of the extremal graph except for at most one are brooms.

Lemma

Let B be a non-trivial brush. If b>a, moving a pendant vertex x from v_j to v_1 strictly increases $W_{\rm ex}$. If b< a, this move strictly decreases $W_{\rm ex}$, and if b = a, $W_{\rm ex}$ remains the same.



Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index Motivation

An overview of our results

Main theorem

Auxiliary definitions

Proof of the main theorem

Open problems

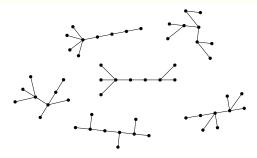
References

Key steps

The extremal graph is a tree with at most one non-broom brush; for every brush there exist two brooms that are adjacent to each other.

Claim 4

The maximum external Wiener index is attained by a caterpillar tree.



Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index Motivation

An overview of our results

Main theorem

Auxiliary definitions

Proof of the main theorem

Open problems

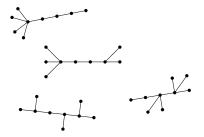
References

Key steps

The extremal graph is a tree with at most one non-broom brush; for every brush there exist two brooms that are adjacent to each other.

Claim 4

The maximum external Wiener index is attained by a caterpillar tree.



Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index Motivation

An overview of our results

Main theorem

Auxiliary definition:

Proof of the main theorem

Open problems

References

Key steps

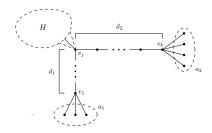
The extremal graph is a tree with at most one non-broom brush; for every brush there exist two brooms that are adjacent to each other.

Claim 4

The maximum external Wiener index is attained by a caterpillar tree.

The Sliding Lemma

If G consists of a double broom D with a subgraph H attached to v_j , then the maximum W_{ex} is attained for j = 1 or j = k.



Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index Motivation

An overview of our results

Main theorem

Auxiliary definitions

Proof of the main theorem

Open problems

References

Key steps

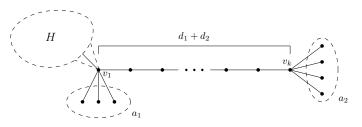
The extremal graph is a tree with at most one non-broom brush; for every brush there exist two brooms that are adjacent to each other.

Claim 4

The maximum external Wiener index is attained by a caterpillar tree.

The Sliding Lemma

If G consists of a double broom D with a subgraph H attached to v_j , then the maximum W_{ex} is attained for j = 1 or j = k.



Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index Motivation

An overview of our results

Main theorem

Auxiliary definitions

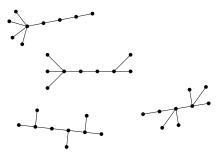
Proof of the main theorem

Open problems

References

Key steps

Claim 5



Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index Motivation

An overview of our results

Main theorem

Auxiliary definitions

Proof of the main theorem

Open problems

References

Key steps

Claim 5

Key steps

Barbara Ikica

Introduction

- The Wiener index The internal & the external Wiener index
- Motivation

An overview of our results

Main theorem

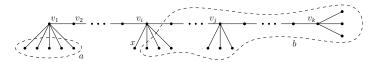
Auxiliary definitions

Proof of the main theorem

Open problems

References

Claim 5



Key steps

Barbara Ikica

Introduction

- The Wiener index The internal & the external Wiener index
- Motivation

An overview of our results

Main theorem

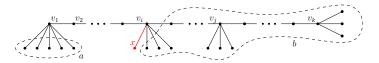
Auxiliary definitions

Proof of the main theorem

Open problems

References

Claim 5



Key steps

Barbara Ikica

Introduction

- The Wiener index The internal & the external Wiener index
- Motivation

An overview of our results

Main theorem

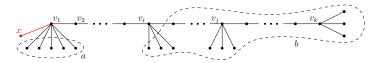
Auxiliary definitions

Proof of the main theorem

Open problems

References

Claim 5



Key steps

Barbara Ikica

Introduction

- The Wiener index The internal & the external Wiener index
- Motivation

An overview of our results

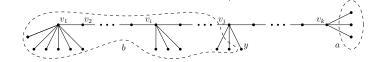
- Main theorem
- Auxiliary definitions

Proof of the main theorem

Open problems

References

Claim 5



Key steps

Barbara Ikica

Introduction

- The Wiener index The internal & the external Wiener index
- Motivation

An overview of our results

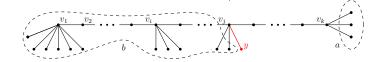
- Main theorem
- Auxiliary definitions

Proof of the main theorem

Open problems

References

Claim 5



Key steps

Barbara Ikica

Introduction

- The Wiener index The internal & the external Wiener index
- Motivation

An overview of our results

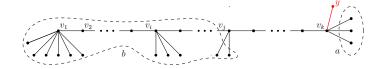
- Main theorem
- Auxiliary definitions

Proof of the main theorem

Open problems

References

Claim 5



Open problems

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index Motivation

An overview of our results

Main theorem

Auxiliary definitions

Proof of the main theorem

Open problems

References

[Stevanović, 2008]

Problem

Determine the graphs of a given order n and maximum degree Δ that attain the maximum value of the external Wiener index.

Open problems

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index Motivation

An overview of our results

results

Main theorem

Auxiliary definitions

Proof of the main theorem

Open problems

References

[Stevanović, 2008]

Problem

Determine the graphs of a given order n and maximum degree Δ that attain the maximum value of the external Wiener index.

[Plesník, 1984]

Problem

Determine the graphs of a given order \boldsymbol{n} and diameter that attain the maximum value of the external Wiener index.

References (1)

Barbara Ikica

Introduction

The Wiener index The internal & the external Wiener index

Motivation

An overview of our results

Main theorem

Auxiliary definitions

Open problems

References

Knor, M., Škrekovski, R., and Tepeh, A. (2016). Mathematical aspects of wiener index. Ars Math. Contemp., 11:327–352.

On the sum of all distances in a graph or digraph. *J. Graph Theory*, 8:1–21.

Stevanović, D. (2008).

Maximizing wiener index of graphs with fixed maximum degree. MATCH Commun. Math. Comput. Chem., 60:71–83.

Wiener, H. (1947).

Structural determination of paraffin boiling points. J. Amer. Chem. Soc., 69:17–20.