

Barbara Ikica FMF UL 17 January 2017

Barbara Ikica

Barbara Ikica

- pharmacological,
- toxicological properties ...

- vertex degrees,
- vertex neighbourhoods,
- number of vertices/edges ...

Barbara Ikica

Molecular descriptors

Topological indices in general The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Molecular descriptors

The **molecular descriptor** is the final result of a logic and mathematical procedure which transforms chemical information encoded within a symbolic representation of a molecule into a useful number or the result of some standardized experiment.

A **topological index** also known as a **connectivity index** is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound. [Todeschini and Consonni, 2000]

Barbara Ikica

Molecular descriptors

Topological indices in general The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs Maximum ABC index

subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Molecular descriptors

The **molecular descriptor** is the final result of a logic and mathematical procedure which transforms chemical information encoded within a symbolic representation of a molecule into a useful number or the result of some standardized experiment.

A **topological index** also known as a **connectivity index** is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound. [Todeschini and Consonni, 2000]

Barbara Ikica

Molecular descriptors

Topological indices in general

The ABC index

The GG index

An overview of results

GG index of bipartite graphs Maximum ABC index

subject to given grap parameters

Maximum Wiener index subject to a given diameter

References

Molecular descriptors

The **molecular descriptor** is the final result of a logic and mathematical procedure which transforms chemical information encoded within a symbolic representation of a molecule into a useful number or the result of some standardized experiment.

A **topological index** also known as a **connectivity index** is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound. [Todeschini and Consonni, 2000]

Molecular descriptors in practice

http://www.moleculardescriptors.eu/

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index The ABC index The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Topological indices in general

The Wiener index

$$\mathcal{W}(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v)$$

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index The ABC index The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Topological indices in general

The Wiener index

$$\mathcal{W}(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v)$$

The atom-bond connectivity index

$$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{\deg(u) + \deg(v) - 2}{\deg(u)\deg(v)}}$$

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index The ABC index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Topological indices in general

The atom-bond connectivity index

$$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{\deg(u) + \deg(v) - 2}{\deg(u)\deg(v)}}$$

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index The ABC index The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Topological indices in general

The atom-bond connectivity index

$$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{\deg(u) + \deg(v) - 2}{\deg(u)\deg(v)}}$$

The Graovac–Ghorbani index

$$\boxed{\mathrm{GG}(G) = \sum_{uv \in E(G)} \sqrt{\frac{n_u + n_v - 2}{n_u n_v}}}$$

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index The ABC index The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Topological indices in general

The atom-bond connectivity index

$$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{\deg(u) + \deg(v) - 2}{\deg(u)\deg(v)}}$$

The Graovac–Ghorbani index

$$\boxed{\mathrm{GG}(G) = \sum_{uv \in E(G)} \sqrt{\frac{n_u + n_v - 2}{n_u n_v}}}$$

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the Wiener index

The Wiener index

$$\mathcal{W}(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v)$$

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the Wiener index

The Wiener index

$$\mathcal{W}(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v)$$

Properties

 usage: a predictor of the boiling points of paraffins, a tool used for preliminary screening of potentially suitable drugs and for QSAR/QSPR modelling [Knor et al., 2016];

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the Wiener index

The Wiener index

$$\mathcal{W}(G) = \sum_{\{u,v\} \subseteq V(G)} \frac{\textit{d}(u,v)}{}$$

Properties

- usage: a predictor of the boiling points of paraffins, a tool used for preliminary screening of potentially suitable drugs and for QSAR/QSPR modelling [Knor et al., 2016];
- a distance-based graph invariant

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the Wiener index

The Wiener index

$$\mathcal{W}(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v)$$

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the Wiener index

The Wiener index

$$W(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v)$$

Properties

Extremal (connected *n*-vertex) ... [Knor et al., 2016]

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the Wiener index

The Wiener index

$$W(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v)$$

Properties

Extremal (connected *n*-vertex) ... [Knor et al., 2016]

• ... graphs: max: P_n / min: K_n

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the Wiener index

The Wiener index

$$W(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v)$$

Properties

Extremal (connected *n*-vertex) ... [Knor et al., 2016]

- ... graphs: max: $P_n / \min: K_n$
- ... trees: max: P_n / min: S_n

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the Wiener index

Problem [Plesník, 1975]

What is the maximum Wiener index among all graphs on n vertices and diameter d?

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the Wiener index

Problem [Plesník, 1975]

What is the maximum Wiener index among all graphs on n vertices and diameter d?

Conjecture [DeLaViña and Waller, 2008]

Let G be a graph with diameter d>2 and order 2d+1. Then $\mathrm{W}(G)\leq \mathrm{W}(C_{2d+1}).$

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the ABC index

The ABC index

$$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{\deg(u) + \deg(v) - 2}{\deg(u)\deg(v)}}$$

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the ABC index

The ABC index

$$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{\deg(u) + \deg(v) - 2}{\deg(u)\deg(v)}}$$

Properties

 usage: modelling thermodynamic properties of organic chemical compounds (a strong predictor of the heat of formation of alkanes and the stability of linear and branched alkanes) [Estrada et al., 1998];

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the ABC index

The ABC index

$$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{\deg(u) + \deg(v) - 2}{\deg(u)\deg(v)}}$$

Properties

- usage: modelling thermodynamic properties of organic chemical compounds (a strong predictor of the heat of formation of alkanes and the stability of linear and branched alkanes) [Estrada et al., 1998];
- a degree-based graph invariant

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the ABC index

The ABC index

$$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{\deg(u) + \deg(v) - 2}{\deg(u)\deg(v)}}$$

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the ABC index

The ABC index

$$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{\deg(u) + \deg(v) - 2}{\deg(u)\deg(v)}}$$

Properties

Extremal (connected *n*-vertex) ...

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the ABC index

The ABC index

$$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{\deg(u) + \deg(v) - 2}{\deg(u)\deg(v)}}$$

Properties

Extremal (connected *n*-vertex) ...

• ... graphs: max: K_n [Chen and Guo, 2011] / min: a tree

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the ABC index

The ABC index

$$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{\deg(u) + \deg(v) - 2}{\deg(u)\deg(v)}}$$

Properties

Extremal (connected *n*-vertex) ...

- ... graphs: max: K_n [Chen and Guo, 2011] / min: a tree
- ... trees: max: S_n [Furtula et al., 2009] / min: ??? [Dimitrov, 2013], [Gutman et al., 2012]

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the GG index

The GG index

$$\boxed{\mathrm{GG}(G) = \sum_{uv \in E(G)} \sqrt{\frac{n_u + n_v - 2}{n_u n_v}}}$$

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the GG index

The GG index

$$\boxed{\mathrm{GG}(G) = \sum_{uv \in E(G)} \sqrt{\frac{n_u + n_v - 2}{n_u n_v}}}$$

Properties

 usage: modelling thermodynamic properties of organic chemical compounds (a strong predictor of the entropy and the acentric factor of alkanes) [Furtula, 2016];

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener inde:

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the GG index

The GG index

$$\boxed{ \begin{aligned} \mathrm{GG}(G) &= \sum_{uv \in E(G)} \sqrt{\frac{n_u + n_v - 2}{n_u n_v}} \\ \hline n_u &= |\{w \in V(G) : \mathbf{d}(w, u) < \mathbf{d}(w, v)\}| \end{aligned}}$$

Properties

- usage: modelling thermodynamic properties of organic chemical compounds (a strong predictor of the entropy and the acentric factor of alkanes) [Furtula, 2016];
- a distance-based graph invariant

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the GG index

The GG index

$$\label{eq:GG} \left| \operatorname{GG}(G) = \sum_{uv \in E(G)} \sqrt{\frac{n_u + n_v - 2}{n_u n_v}} \right|$$

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the GG index

The GG index

$$\label{eq:GG} \boxed{\mathrm{GG}(G) = \sum_{uv \in E(G)} \sqrt{\frac{n_u + n_v - 2}{n_u n_v}}}$$

Properties

Extremal (connected *n*-vertex) ...

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the GG index

The GG index

$$\label{eq:GG} \boxed{\mathrm{GG}(G) = \sum_{uv \in E(G)} \sqrt{\frac{n_u + n_v - 2}{n_u n_v}}}$$

Properties

Extremal (connected *n*-vertex) ...

• ... graphs: max: ??? [Furtula, 2016] / min: K_n

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the GG index

The GG index

$$\label{eq:GG} \boxed{\mathrm{GG}(G) = \sum_{uv \in E(G)} \sqrt{\frac{n_u + n_v - 2}{n_u n_v}}}$$

Properties

Extremal (connected *n*-vertex) ...

- ... graphs: max: ??? [Furtula, 2016] / min: K_n
- ... trees: max: S_n [Rostami and Sohrabi-Haghighat, 2014] / min: P_n [Rostami and Sohrabi-Haghighat, 2014]

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs Maximum ABC index

subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the GG index

\max among connected *n*-vertex graphs

Computational results [Furtula, 2016]:

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the GG index

\max among connected *n*-vertex graphs

Computational results [Furtula, 2016]:

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the GG index

\max among connected *n*-vertex graphs

Computational results [Furtula, 2016]:

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Some results on the GG index

\max among connected *n*-vertex graphs

Computational results [Furtula, 2016]:

Barbara Ikica

Molecular descriptors

- Topological indices in general
- The Wiener index
- The ABC index
- The GG index

An overview of results

GG index of bipartite graphs

- Maximum ABC index subject to given graph parameters
- Maximum Wiener index subject to a given diameter

References

Bipartite graphs

Darko Dimitrov, B. I., Riste Škrekovski, Remarks on the Graovac—Ghorbani index of bipartite graphs, Appl. Math. Comput. 293 (2017) 370–376 (10.1016/j.amc.2016.08.047)

Barbara Ikica

Molecular descriptors

- Topological indices in general
- The Wiener index
- The ABC index
- The GG index

An overview of results

GG index of bipartite graphs

- Maximum ABC index subject to given graph parameters
- Maximum Wiener index subject to a given diameter

References

Barbara Ikica

Molecular descriptors

- Topological indices in general
- The Wiener index
- The ABC index
- The GG index

An overview of results

GG index of bipartite graphs

- Maximum ABC index subject to given graph parameters
- Maximum Wiener index subject to a given diameter

References

Barbara Ikica

Molecular descriptors

- Topological indices in general
- The Wiener index
- The ABC index
- The GG index

An overview of results

GG index of bipartite graphs

- Maximum ABC index subject to given graph parameters
- Maximum Wiener index subject to a given diameter

References

Barbara Ikica

Molecular descriptors

- Topological indices in general
- The Wiener index
- The ABC index
- The GG index

An overview of results

GG index of bipartite graphs

- Maximum ABC index subject to given graph parameters
- Maximum Wiener index subject to a given diameter

References

Barbara Ikica

Molecular descriptors

- Topological indices in general
- The Wiener index
- The ABC index
- The GG index

An overview of results

GG index of bipartite graphs

- Maximum ABC index subject to given graph parameters
- Maximum Wiener index subject to a given diameter

References

The normalized Graovac-Ghorbani index

The GG index

$$\boxed{\mathrm{GG}(G) = \sum_{uv \in E(G)} \sqrt{\frac{n_u + n_v - 2}{n_u n_v}}}$$

Barbara Ikica

Molecular descriptors

- Topological indices in general
- The Wiener index
- The ABC index
- The GG index

An overview of results

GG index of bipartite graphs

- Maximum ABC index subject to given graph parameters
- Maximum Wiener index subject to a given diameter

References

The normalized Graovac-Ghorbani index

The GG index

$$\boxed{\mathrm{GG}(G) = \sum_{uv \in E(G)} \sqrt{\frac{n_u + n_v - 2}{n_u n_v}}}$$

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

The normalized Graovac-Ghorbani index

The NGG index

$$NGG(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{n_u n_v}}$$

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

The normalized Graovac-Ghorbani index

The NGG index

$$\operatorname{NGG}(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{n_u n_v}}$$

Proposition

Let G be a bipartite graph on n vertices. Then

$$\operatorname{GG}(G) = \operatorname{NGG}(G)\sqrt{n-2}.$$

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

The GG index of a long path

Proposition

 $\lim_{n \to \infty} \mathrm{NGG}(P_n) = \pi.$

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

The GG index of a long path

Proposition

 $\lim_{n \to \infty} \operatorname{NGG}(P_n) = \pi.$

Corollary

$$\operatorname{GG}(P_n) \sim \pi \sqrt{n-2}.$$

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Extremals of the GG index among bipartite graphs

Theorem

Amongst all bipartite graphs on n vertices, the **maximum** GG index is uniquely attained by $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$.

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Extremals of the GG index among bipartite graphs

Theorem

Amongst all bipartite graphs on n vertices, the **maximum** GG index is uniquely attained by $K_{\lfloor n/2 \rfloor, \lfloor n/2 \rfloor}$.

Theorem

Amongst all bipartite graphs on n vertices, the **minimum** GG index is uniquely attained by

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Extremals of the GG index among bipartite graphs

Theorem

Amongst all bipartite graphs on n vertices, the **maximum** GG index is uniquely attained by $K_{\lfloor n/2 \rfloor, \lceil n/2 \rceil}$.

Theorem

Amongst all bipartite graphs on n vertices, the **minimum** GG index is uniquely attained by

•
$$P_n$$
 for $n < 8$,

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Extremals of the GG index among bipartite graphs

Theorem

Amongst all bipartite graphs on n vertices, the **maximum** GG index is uniquely attained by $K_{\lfloor n/2 \rfloor, \lfloor n/2 \rfloor}$.

Theorem

Amongst all bipartite graphs on n vertices, the ${\rm minimum}$ GG index is uniquely attained by

- P_n for n < 8,
- C_n for even $n \ge 8$,

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Extremals of the GG index among bipartite graphs

Theorem

Amongst all bipartite graphs on n vertices, the **maximum** GG index is uniquely attained by $K_{\lfloor n/2 \rfloor, \lfloor n/2 \rfloor}$.

Theorem

Amongst all bipartite graphs on n vertices, the **minimum** GG index is uniquely attained by

- P_n for n < 8,
- C_n for even $n \ge 8$,
- C'_n for odd $8 \le n \le 15$,

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Extremals of the ${\rm GG}$ index among bipartite graphs

Theorem

Amongst all bipartite graphs on n vertices, the **maximum** GG index is uniquely attained by $K_{\lfloor n/2 \rfloor, \lfloor n/2 \rfloor}$.

Theorem

Amongst all bipartite graphs on n vertices, the ${\rm minimum}$ GG index is uniquely attained by

- P_n for n < 8,
- C_n for even $n \ge 8$,
- C'_n for odd $8 \le n \le 15$,
- C_n'' for odd $n \ge 17$.

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Extremals of the GG index among bipartite graphs

Theorem

Amongst all bipartite graphs on n vertices, the **minimum** GG index is uniquely attained by

- P_n for n < 8,
- C_n for even $n \ge 8$,
- C'_n for odd $8 \le n \le 15$,
- C_n'' for odd $n \ge 17$.

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Extremals of the ${\rm GG}$ index among bipartite graphs

Theorem

Amongst all bipartite graphs on n vertices, the **minimum** GG index is uniquely attained by

- P_n for n < 8,
- C_n for even $n \ge 8$,
- C'_n for odd $8 \le n \le 15$,
- C_n'' for odd $n \ge 17$.

Barbara Ikica

Molecular descriptors

- Topological indices in general
- The Wiener index
- The ABC index
- The GG index

An overview of results

GG index of bipartite graphs

- Maximum ABC index subject to given graph parameters
- Maximum Wiener index subject to a given diameter

References

Extremals of the GG index among bipartite graphs

Theorem

Amongst all bipartite graphs on n vertices, the **minimum** GG index is uniquely attained by

- P_n for n < 8,
- C_n for even $n \ge 8$,
- C'_n for odd $8 \le n \le 15$,
- C_n'' for odd $n \ge 17$.

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Conjectures

Conjecture

Let G be a graph with **maximal** GG index amongst all graphs on $n \gg \Delta$ vertices. Then G is an (almost) Δ -regular graph.

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener inde

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Conjectures

Conjecture

Let G be a graph with **maximal** GG index amongst all graphs on $n \gg \Delta$ vertices. Then G is an (almost) Δ -regular graph.

Conjecture

Let G be a graph with **minimal** GG index amongst all graphs on $n \gg \Delta$ vertices. Then G is the cycle C_n .

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Conjectures

Conjecture

Let G be a tree with **maximal** GG index amongst all trees on n vertices with maximum degree $\Delta \leq n-1$. Then G is an almost dendrimer $T_{n,\Delta}$.

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener inde>

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Conjectures

Conjecture

Let G be a tree with **maximal** GG index amongst all trees on n vertices with maximum degree $\Delta \leq n-1$. Then G is an almost dendrimer $T_{n,\Delta}$.

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener inde

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Maximizing the ABC index subject to $...^1$

The ABC index

$$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{\deg(u) + \deg(v) - 2}{\deg(u)\deg(v)}}$$

¹Based on joint work with D. Dimitrov and R. Škrekovski (*Remarks* on maximum atom-bond connectivity index with given graph parameters, accepted for publication in DAM subject to minor modifications).

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

... given edge-connectivity

Theorem [Zhang et al., 2016]

Let G be a connected graph on n vertices with edge-connectivity $k \ge 2$. Then $\boxed{\operatorname{ABC}(G) \le \operatorname{ABC}(K_n(k))}$ with equality if and only if $\boxed{G \cong K_n(k)}$.

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

... given edge-connectivity

Theorem [Zhang et al., 2016]

Let G be a connected graph on n vertices with edge-connectivity $k \ge 2$. Then $\boxed{\operatorname{ABC}(G) \le \operatorname{ABC}(K_n(k))}$ with equality if and only if $\boxed{G \cong K_n(k)}$.

$$K_n(k) = K_k \lor (K_1 + K_{n-k-1})$$

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener inde

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

... given edge-connectivity

Theorem [Zhang et al., 2016]

Let G be a connected graph on n vertices with edge-connectivity $k \ge 2$. Then $\boxed{\operatorname{ABC}(G) \le \operatorname{ABC}(K_n(k))}$ with equality if and only if $\boxed{G \cong K_n(k)}$.

$$K_n(k) = K_k \lor (K_1 + K_{n-k-1})$$

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

... given edge-connectivity

Theorem [Zhang et al., 2016]

Let G be a connected graph on n vertices with edge-connectivity $k \ge 2$. Then $ABC(G) \le ABC(K_n(k))$ with equality if and only if $G \cong K_n(k)$.

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

... given edge-connectivity

Theorem [Zhang et al., 2016]

Let G be a connected graph on n vertices with edge-connectivity $k \ge 2$. Then $\boxed{\operatorname{ABC}(G) \le \operatorname{ABC}(K_n(k))}$ with equality if and only if $\boxed{G \cong K_n(k)}$.

Theorem

Let G be a connected graph on n vertices with edge-connectivity k = 1. Then $\boxed{\operatorname{ABC}(G) \leq \operatorname{ABC}(K_n(1))}$ with equality if and only if $\boxed{G \cong K_n(1)}$.

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener inde>

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

\ldots given chromatic number χ

Theorem [Zhang et al., 2016]

Let G be an n-vertex connected graph with chromatic number $\chi = 2$. Then $ABC(G) \leq ABC(T_{n,\chi})$ with equality if and only if $G \cong T_{n,\chi}$ ².

 ${}^{2}T_{n,l}$ denotes a complete *l*-partite graph of order *n* with $|t_{i} - t_{j}| \leq 1$, where t_{i} is the number of vertices in the *i*-th partition set of $T_{n,l}$.

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener inde>

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

\ldots given chromatic number χ

Theorem [Zhang et al., 2016]

Let G be an n-vertex connected graph with chromatic number $\chi = 2$. Then $\boxed{\operatorname{ABC}(G) \leq \operatorname{ABC}(T_{n,\chi})}$ with equality if and only if $\boxed{G \cong T_{n,\chi}}^2$.

Theorem

Let G be an n -vertex connected graph with chromatic number $\chi \geq 2$ and		
suppose that χ divides n . Then	$\operatorname{ABC}(G) \leq \operatorname{ABC}(T_{n,\chi})$	with equality if and
only if $G \cong T_{n,\chi}$.		

 $^{2}T_{n,l}$ denotes a complete *l*-partite graph of order *n* with $|t_{i} - t_{j}| \leq 1$, where t_{i} is the number of vertices in the *i*-th partition set of $T_{n,l}$.

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Maximizing the Wiener index subject to a given $\mathsf{diameter}^3$

The Wiener index

$$\mathcal{W}(G) = \sum_{\{u,v\} \subseteq V(G)} d(u,v)$$

³Based on joint work with Q. Sun, R. Škrekovski and V. Vukasinović.

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Large-diameter graphs

Double broom

The double broom D(n, a, b) consists of a path on n - a - b vertices together with a independent vertices adjacent to one of its endpoints and b independent vertices adjacent to the other endpoint.
Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Large-diameter graphs

Double broom

The double broom D(n, a, b) consists of a path on n - a - b vertices together with a independent vertices adjacent to one of its endpoints and b independent vertices adjacent to the other endpoint.

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Large-diameter graphs

Theorem

Let G be a graph of order n and let d = n - c be its diameter. Here, $c \ge 3$ is a constant such that $n \ge \frac{1}{6}(7c^3 - 18c^2 + 23c - 6)$. Then $W(G) \le W(D(n, \lfloor (c+1)/2 \rfloor, \lceil (c+1)/2 \rceil))$ with equality if and only if $G \cong D(n, \lfloor (c+1)/2 \rfloor, \lceil (c+1)/2 \rceil)$.

Barbara Ikica

Molecular descriptors

Topological indices in general

The Wiener index

The ABC index

The GG index

An overview of results

GG index of bipartite graphs Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

Large-diameter graphs

Theorem

Let G be a graph of order n and let d = n - c be its diameter. Here, $c \ge 3$ is a constant such that $n \ge \frac{1}{6}(7c^3 - 18c^2 + 23c - 6)$. Then $W(G) \le W(D(n, \lfloor (c+1)/2 \rfloor, \lceil (c+1)/2 \rceil)))$ with equality if and only if $G \cong D(n, \lfloor (c+1)/2 \rfloor, \lceil (c+1)/2 \rceil))$.

Proposition

Let G be a graph of order n. If the diameter of G is d = n - 1, then $W(G) \le W(D(n, 1, 1))$ with equality if and only if $G \cong D(n, 1, 1)(\cong P_n)$. If the diameter of G is d = n - 2, then $W(G) \le W(D(n, 1, 2))$ with equality if and only if $G \cong D(n, 1, 2)$.

Barbara Ikica

Molecular descriptors

- Topological indices in general
- The Wiener index
- The ABC index
- The GG index

An overview of results

- GG index of bipartite graphs Maximum ABC index subject to given graph parameters
- Maximum Wiener index subject to a given diameter

References

Large-diameter graphs

Proposition

Let G be a graph on n vertices with diameter equal to d = n - 3.

- If $n \ge 8$, then $W(G) \le W(D(n, 2, 2))$ with equality if and only if $G \cong D(n, 2, 2)$.
- If n = 7, then $W(G) \le W(D(7, 2, 2)) = W(T'_7)$ with equality if and only if $G \cong D(7, 2, 2)$ or $G \cong T'_7$.
- If n = 6, then $W(G) \le W(D(6, 2, 2))$ with equality if and only if $G \cong D(6, 2, 2)$.
- If n = 5, then $W(G) \le W(S_5)$ with equality if and only if $G \cong S_5$.
- If n = 4, then $W(G) \leq W(K_4)$ with equality if and only if $G \cong K_4$.

Barbara Ikica

Molecular descriptors

Topological indices in general

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

References (1)

Chen, J. and Guo, X. (2011).

Extreme atom-bond connectivity index of graphs. MATCH Commun. Math. Comput. Chem., 65:713-722.

Das, K. C., Xu, K., and Nam, J. (2015).

Zagreb indices of graphs. Front. Math. China, 10:567-582.

DeLaViña, E. and Waller, B. (2008).

Spanning trees with many leaves and average distance. *Electronic. J. Combin.*, 15:1–16.

Efficient computation of trees with minimal atom-bond connectivity inde. *Appl. Math. Comput.*, 224:663–670.

Dimitrov, D., Ikica, B., and Škrekovski, R. (2017). Remarks on the graovac-ghorbani index of bipartite graphs. *Appl. Math. Comput.*, 293:370–376.

Estrada, E., Torres, L., Rodríguez, L., and Gutman, I. (1998). An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes. *Indian J. Chem.*, 37A:849–855.

Barbara Ikica

Molecular descriptors

Topological indices in general

The ABC index

The GG index

An overview of results

GG index of bipartite graphs

Maximum ABC index subject to given graph parameters

Maximum Wiener index subject to a given diameter

References

References (2)

Furtula, B. (2016).

Atom-bond connectivity index versus graovac–ghorbani analog. MATCH Commun. Math. Comput. Chem., 75:233–242.

Gutman, I., Furtula, B., and Ivanović, M. (2012). Notes on trees with minimal atom-bond connectivity index. MATCH Commun, Math. Comput. Chem., 67:467-482.

Furtula, B., Graovac, A., and Vukičević, D. (2009). Atom-bond connectivity index of trees.

Knor, M., Škrekovski, R., and Tepeh, A. (2016). Mathematical aspects of wiener index. *Ars Math. Contemp.*, 11:327–352.

Discr. Appl. Math, 157:2828-2835.

Plesník, J. (1975).

Critical graph of given diameter. Acta Math. Univ. Comenian., 30:71–93.

Rostami, M. and Sohrabi-Haghighat, M. (2014). Further results on new version of atom-bond connectivity index. MATCH Commun. Math. Comput. Chem., 71:21–32.

Barbara Ikica

Molecular descriptors

- Topological indices in general
- The Wiener index
- The ABC index
- The GG index

An overview of results

GG index of bipartite graphs

- Maximum ABC index subject to given graph parameters
- Maximum Wiener index subject to a given diameter

References

References (3)

Todeschini, R. and Consonni, V. (2000).

Handbook of Molecular Descriptors.

Number 11 in Methods and Principles in Medicinal Chemistry. WILEY-VCH, Weinheim.

Zhang, X. M., Yang, Y., Wang, H., and Zhang, X.-D. (2016). Maximum atom-bond connectivity index with given graph parameters.

Discrete Appl. Math., 215:208-217.