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Clustering
Methods
Partitioning, hierarchical

Density-based, graph-based

Datasets

Clustering Validity
Indices
Internal, External

Correlation

Guidelines

Clustering in Biomedicine

Applicable to:
• cancer subtyping on the basis of gene expression levels,

• protein homology detection from amino acid sequences of
structures,

• the identification of protein complexes using
protein-protein interactions
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1. Tool picking (partitioning (k-means), hierarchical,
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2. Parameter optimisation (parameters influence the
number and size of resulting clusters)

3. Quality measures/Cluster validity indices (internal,
external)

4. Standardised evaluation (poor comparability of
clustering results)
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Clustering Methods

Partitioning
The objects are assigned to clusters and iteratively change
clusters based on their dissimilarity in order to optimise a
given target function.

Fanny, k-means, Partitioning Around Medoids

Hierarchical
The dataset is transformed into a tree-like structure where
the leaves represent the objects and the inner nodes the
hierarchical relationship between them.

Hierarchical Clustering, Spectral Clustering
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Clustering Methods

Density-based
Identifying regions with a locally similar object density.

Clusterdp, DBSCAN

Graph-based
The input is considered as a graph with the objects being
the nodes connected by weighted or unweighted edges. The
clustering problem is solved by solving an analogous graph
theoretical problem (e.g. clique finding, simulating random
walks).

Affinity Propagation, clusterONE, Markov Clustering,
MCODE, Transitivity Clustering
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Internal Indices
The clustering is judged on the basis of certain intrinsic
statistical properties of the clustering itself.

Davies-Bouldin Index, Dunn Index, Silhouette Value

External Indices
The clustering is compared to a user-given gold-standard
clustering (using a pairwise/mapping approach).

Fβ score, False Discovery rate, False Positive Rate,
Fowles-Mallows Index, Jaccard Index, Rand Index, Sensitivity
(Recall), Specificity, V-measure
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Davies-Bouldin Index

DB = 1
n
·
∑
ci∈C

max
ci 6=cj∈C

(
σi + σj
‖ci − cj‖

)
,

σi =
√

1
|ci|

∑
xi∈ci

‖xi − ci‖

Dunn Index

D =
min

ci 6=cj∈C

(
min

xi∈ci,xj∈cj
d(xi, xj)

)
max
ck∈C

(
max

xi,xj∈ck

d(xi, xj)
)
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Silhouette Value
c(xi) – the cluster of object xi
o(xi) – the closest cluster to xi

S = 1
n

∑
i

svi

svi = 1
n

b(xi)− a(xi)
max{a(xi), b(xi)}

a(xi) = 1
|c(xi)|

∑
xj∈c(xi)

d(xi, xj)

b(xi) = 1
|o(xi)|

∑
xj∈o(xi)

d(xi, xj)
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svi

Correlation among internal and external indices
The silhouette value correlated best (0.71) with the F1
score, F2 score, FM index, Jaccard index and V-measure.
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Guidelines (working with a new biomedical set
without a gold standard)

1. Use Transitivity Clustering, Hierarchical Clustering or
Partitioning Around Medoids.

2. Compute the silhouette values for clustering results using
a broad range of parameter-set variations.

3. Pick the result for the parameter set yielding the highest
silhouette value.

Remark. The silhouette value is a particularly poor measure
for entangled and highly overlapping datasets.
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